亚星游戏官网-www.yaxin868.com

山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-04-15切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

高频电弧信号错时采集系统及方法

时间:2025-04-12    作者: 管理员

专利名称:高频电弧信号错时采集系统及方法
技术领域:
本发明提出了一种高频电弧信号错时采集系统及方法,涉及焊接控制领域。
背景技术:
脉冲TIG焊在提高能量密度、热输入控制、焊缝成形记忆焊接质量等方面具有独特的优点,近年来在制造业中的应用日益广泛。但目前脉冲电弧的应用频率一般在30KHz以下。频率的进一步提高将影响对电弧信号的采集真实性造成很大的困难。

发明内容
为了能够实现高频信号的采集问题,本发明采用了错时采集的方法,在多个周期 中采集多个点,然后整合为一个完整周期,用以反映真实情况。具体实施方案如下 高频电弧信号错时采集系统包括光谱仪、高速摄像、电压传感器、电流传感器、触摸屏、串口通讯电路、MCU控制器、隔离电路、信号放大电路、电源电路、信号采集电路.其中MCU控制器作为主控设备通过串口通讯电路与HMI通信设置每周期采样点数N,电流传感器、电压传感器采集到的电弧信号则通过信号采集电路输入MCU控制器进行分析处理。MCU控制器发出的PWM信号通过隔离电路与信号放大输出控制光谱仪和高速摄像机。信号采集电路信号采集电路的输入端输入由霍尔电流传感器从焊接设备采集的高频信号,然后经过比较器U6后输入到MUC控制器。隔离电路,MCU控制器发出的4路P丽信号,分别经高速光耦01、高速光耦02、高速光耦03、高速光耦04后输出。隔离电路的独立电源由电源电路的电源芯片7805的输出口连接DC-DC芯片U8后再连接整流芯片U7和电容组成的电流电路构成。信号放大电路,经所述高速光耦01、高速光耦02、高速光耦03、高速光耦04后输出的PWM信号接入比较器U9进行信号放大后输出。电源电路,电源电路由外部电源和整流芯片Ul和整流芯片U2以及电阻电容组成。串口通讯电路,MCU控制器输出的串口通信信号经RS232通信接口芯片U4后连接到串口接头输出。MCU控制器,采用型号为STM32F103RBT6的32位基于ARM内核的Cortex M3微处理器。一种高频电弧信号错时采集方法,示意如图I :第一步电压传感器和电流传感器将采集得到的电弧信号输入信号采集电路作为电压比较器U6的输入信号,电压比较器U6的输出信号为与输入信号同步同周期为Tl的方波信号,获得待测信号的周期。以电压比较器U6的输出信号作为基频信号输入MCU控制器。第二步通过触摸屏设置程序中每周期采样点数N,则有At=Tl/N,并通过串口通讯电路输入到MCU控制器。第三步MCU控制器得到电压比较器U6输出的方波信号的周期Tl后输出周期为T2的PWM信号,二者关系为T2=nXTl+At。MCU控制器输出的PWM信号通过隔离电路与放大电路输出作为光谱仪和高速摄像机的驱动信号。光谱仪、高速摄像机在PWM信号的上升沿采集电弧信号。将采集所得的图像信息进行叠加,就可以得到待测信号的完整周期信息。其中T1为输入信号周期,N为信号每周期的采样点数,T2为MCU控制器所输出的PWM信号周期,At为每两个相邻的采样点间隔时间。本发明利用电压比较器实现对待测信号的频率采集,将与待测信号同周期Tl的方波信号输入MCU后。由软件周期为T2的目标PWM并作为采集触发信号。采用电压比较器来直接将目标信号转化成方波等于直接获得了其信号频率,可以用来采集高频率的电弧信号,避免了测量采集所造成的误差,准确性高。


图I.错时采集法示意图;
图2.本发明的示意框图;图3.本发明的MCU控制电路;图4.本发明的串口通讯电路;图5.信号采集电路;图6.隔离电路;图7.信号放大电路;图8.供电电路;图9.隔离部分供电电路;图10.本发明的方法流程具体实施例方式本发明的具体实施方式
将结合附图对本发明进行详细说明。本系统主要由HMI、串口通讯电路、MCU控制器、隔离电路、运算放大电路、电源电路、光谱仪、高速摄像、电压传感器、电流传感器组成。如图2所示电源电路为整个电路板供电,MCU的控制信号与信号放大与滤波电路之间,输入信号与MCU之间的信号隔离通过隔离电路实现。系统工作时,输入信号与电压比较器参考电压比较输出频率与输入信号相同切同步的脉冲信号,并输入到MCU中。操作者通过HMI设定信号采集系统工作需要的PWM占空比和频率,HMI与MCU控制器通过串口通讯电路连接,MCU接收到串口通讯电路发送来的占空比和频率信息,并在HMI设定的频率基础上增加一段时间延时再输出相应占空比和频率的PWM信号,用来驱动光谱仪等信号采集设备。则相当于在同一周期的不同位置采集信号。达到了对高频信号错时采集的目的。图3为本发明的MCU部分,USART_TX、USART_RX为串口通讯引脚,分别于U4相连接实现串口通讯。PWM1-4为PWM信号输出引脚,分别与U8的1-4号引脚相连接,晶振Yl以及两端起振电容的配合使用,为系统提供了时钟源。MCU的37脚为方波信号输入引脚。图4为本发明的串口通讯电路,由HMI输入需要的PWM频率和采样点个数,通过串口通讯发送到MCU,完成目标PWM的设定。U4( 232芯片)连接HMI和MCU。U4通过基于232标准的电平转换实现HMI和MCU的串口通讯。图5为信号采集部分电路图,如图中所示,外部信号通过接线端子P2接入U6A,U6A和R4组成电压跟随器,电压跟随器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到隔离作用。U6B和R5、R6组成过零比较器,将不规则电弧信号转化为同频率的方波信号。图6为隔离电路,控制信号的输出部分采用高速光耦输出。PWM信号经U8分别输入到各PWM输出通道光耦的输入端,其中U8起到对PWM信号的放大作用,提高了信号的驱动能力,使能更好的驱动光耦,而光耦的使用实现了信号的隔离输出。图7为运算放大电路,如图所示,U9的A,B,C,D四路运放正相输入端分别连接控制信号PWM1-4的输出,PWM信号经运放放大3倍后输出到各自端子引脚。U9供电电源来自DC-DC,(在电源部分做说明)。图8为系统供电部分电路图,在端子Pl由外部输入9V直流电源,经电容滤波,到限流电阻Rl输入到电源转换芯片U1,输出5V电源,同样由电源转换芯片U2输出3. 3V电源,为系统各部分供电。 图9,为隔离部分电源示意图,DC-DC输入端电源取自Ul,输出15V电源,为U9供电,U7电源转换芯片输入端取自DC-DC输出端15V电源,U7输出5V电源,为高速光耦的的集电极供电。这样外部设备与系统内部运用光耦实现了充分的隔离。光耦与系统连接部分采用系统电源供电,光耦与外部设备连接部分采用DC-DC输出端电源供电,充分保护了系统的安全。在本发明中,MCU控制器扩展232总线接口,该接口可以和HMI通信。在HMI上,可以进行PWM占空比和频率设定并实时显示接收到的数据。在本实施例中高频电弧信号错时采集方法,示意如图I :第一步电压传感器和电流传感器将采集得到的电弧信号输入信号采集电路作为电压比较器U6的输入信号,电压比较器U6的输出信号为与输入信号同步同周期为Tl的方波信号,获得待测信号的周期。以电压比较器U6的输出信号作为基频信号输入MCU控制器。第二步通过触摸屏设置程序中每周期采样点数N,则有At=Tl/N,并通过串口通讯电路输入到MCU控制器。第三步MCU控制器得到电压比较器U6输出的方波信号的周期Tl后输出周期为T2的PWM信号,二者关系为T2=nXTl+At。MCU控制器输出的PWM信号通过隔离电路与放大电路输出作为光谱仪和高速摄像机的驱动信号。光谱仪、高速摄像机在PWM信号的上升沿采集电弧信号。将采集所得的图像信息进行叠加,就可以得到待测信号的完整周期信息。其中T1为输入信号周期,N为信号每周期的采样点数,T2为MCU控制器所输出的PWM信号周期,At为每两个相邻的采样点间隔时间。
权利要求
1.高频电弧信号错时采集系统,其特征在于其包括光谱仪、高速摄像、电压传感器、电流传感器、触摸屏、串口通讯电路、MCU控制器、隔离电路、信号放大电路、电源电路、信号采集电路;其中MCU控制器作为主控设备通过串口通讯电路与HMI通信设置每周期采样点数N,电流传感器、电压传感器采集到的电弧信号则通过信号采集电路输入MCU控制器进行分析处理;MCU控制器发出的PWM信号通过隔离电路与信号放大输出控制光谱仪和高速摄像机; 信号采集电路信号采集电路的输入端输入由霍尔电流传感器从焊接设备采集的高频信号,然后经过比较器U6后输入到MUC控制器; 隔离电路,MCU控制器发出的4路PWM信号,分别经高速光耦01、高速光耦02、高速光耦03、高速光耦04后输出;隔离电路的独立电源由电源电路的电源芯片7805的输出口连接DC-DC芯片U8后再连接整流芯片U7和电容组成的电流电路构成; 信号放大电路,经所述高速光耦01、高速光耦02、高速光耦03、高速光耦04后输出的 PWM信号接入比较器U9进行信号放大后输出; 电源电路,电源电路由外部电源和整流芯片Ul和整流芯片U2以及电阻电容组成; 串口通讯电路,MCU控制器输出的串口通信信号经RS232通信接口芯片U4后连接到串口接头输出。
2.根据权利要求I所述的高频电弧信号错时采集系统,其特征在于所述的MCU控制器采用型号为STM32F103RBT6的32位基于ARM内核的Cortex M3微处理器。
3.一种高频电弧信号错时采集方法,其特征在于第一步电压传感器和电流传感器将采集得到的电弧信号输入信号采集电路作为电压比较器U6的输入信号,电压比较器U6的输出信号为与输入信号同步同周期为Tl的方波信号,获得待测信号的周期;以电压比较器U6的输出信号作为基频信号输入MCU控制器;第二步通过触摸屏设置程序中每周期采样点数N,则有At=Tl/N,并通过串口通讯电路输入到MCU控制器;第三步MCU控制器得到电压比较器U6输出的方波信号的周期Tl后输出周期为T2的PWM信号,二者关系为T2=nXTl+At ;MCU控制器输出的PWM信号通过隔离电路与放大电路输出作为光谱仪和高速摄像机的驱动信号;光谱仪、高速摄像机在PWM信号的上升沿采集电弧信号;将采集所得的图像信息进行叠加,就可以得到待测信号的完整周期信息; 其中=Tl为输入信号周期,N为信号每周期的采样点数,T2为MCU控制器所输出的PWM信号周期,At为每两个相邻的采样点间隔时间。
全文摘要
高频电弧信号错时采集系统及方法,涉及焊接控制领域。所述的系统包括光谱仪、高速摄像、电压传感器、电流传感器、触摸屏、串口通讯电路、MCU控制器、隔离电路、信号放大电路、电源电路、信号采集电路;其中MCU控制器作为主控设备通过串口通讯电路与HMI通信设置每周期采样点数N,电流传感器、电压传感器采集到的电弧信号则通过信号采集电路输入MCU控制器进行分析处理;MCU控制器发出的PWM信号通过隔离电路与信号放大输出控制光谱仪和高速摄像机;采用电压比较器来直接将目标信号转化成方波等于直接获得了其信号频率,可以用来采集高频率的电弧信号,避免了测量采集所造成的误差,准确性高。
文档编号G01R23/02GK102721864SQ20121013781
公开日2012年10月10日 申请日期2012年5月4日 优先权日2012年5月4日
发明者宋永伦, 张军, 梁帅, 白立来, 苏国火, 闫思博 申请人:北京工业大学

  • 专利名称:基于超磁致伸缩材料Terfenol-D的无源压力传感器的制作方法技术领域:本发明属于磁致伸缩传感器领域,特别涉及一种以超磁致伸缩材料Terfenol-D为敏感元件的无源磁致伸缩压力传感器。背景技术:现有的压力传感器种类繁多,典型的
  • 专利名称:一种胶凝砂砾石水泥含量的酚酞滴定测定法的制作方法技术领域:本发明涉及一种胶凝砂砾石水泥含量的酚酞滴定测定法。背景技术:胶凝砂砾石是一种性能介于混凝土与土体的新型筑坝材料,将河床砂砾石和开挖 弃渣等作为骨料,加入水与少量水泥等胶凝材
  • 专利名称:一种光纤光栅拉力传感器的制作方法技术领域:本发明涉及光纤传感领域,特别涉及一种光纤光栅拉力传感器。背景技术:目前,常用的拉力传感器多为电阻应变式拉力传感器,虽然具有结构简单、测量范围广、成本低等许多优点,但是也具有一定的局限性,例
  • 专利名称:一种用于可见异物检测系统的检测观察装置的制作方法技术领域:本实用新型涉及一种检测观察装置,具体涉及用于可见异物检测系统的检测观察>J-U ρ α装直。背景技术:液体药品包括注射针剂、大输液、口服液、滴眼液等,通常采用
  • 专利名称:一种用于半渗透隔板法毛管压力电阻率联测的夹持器的制作方法技术领域:本实用新型涉及一种实验室岩石电学测量装置,特别涉及一种用于半渗透隔板法毛管压力电阻率联测的夹持器。背景技术:半渗透隔板法毛管压力曲线电阻率联测主要用于Archie公
  • 专利名称:一种微纳光纤布拉格光栅折射率传感器及其制作方法技术领域:本发明属于光纤传感技术领域,具体涉及一种微纳光纤布拉格光栅折射率传感器及其制作方法。背景技术:折射率是常用的光学参数之一,物质的许多物理、化学参数与折射率有关,测量折射率在石
山东亚星游戏官网机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12


【网站地图】【sitemap】