רÀûÃû³Æ£ºÒ»ÖÖÈýά¹âÆ×Êý¾ÝУÕý·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°Ò»ÖÖеÄÈýά¹âÆ×Êý¾Ý¿ìËÙУÕý·½·¨£¬¿ÉÒÔ¿ìËÙУÕý´¦ÀíÈýά¹âÆ×É¢Éä¡£
±³¾°¼¼Êõ£º
¹âÆ×·ÖÎöÊÇĿǰ·ÖÎö»¯Ñ§ÁìÓòÀïÖØÒªµÄÒ»ÖÖÑо¿·½·¨£¬ÔÚÑо¿¶Ñ·Ê¸¯Êì»¯ÌØÕ÷¡¢Ë®ÌåÖÐË®ÈÜÐÔÓлúÎïµÄÑÝ±ä¹æÂÉ¡¢³ÇÊÐÉú»îÀ¬»øÌîÂñ³¡ÉøÂËÒºÎÛȾÎïÇ¨ÒÆ×ª»¯¹æÂÉ¡¢Î£ÏÕ·ÏÎï´¦Àí´¦Öó¡ËùµÄ°²È«ÌØÐÔ·ÖÎöµÈÁìÓòµÄÑо¿Öеõ½¹ã·ºµÄÓ¦Ó᣹âÆ×ÓÈÆäÊÇÈýά¹âÆ×¾ßÓнÏΪ·á¸»µÄÐÅÏ¢£¬¿ÉÒÔ¸ù¾Ý¹âÇ¿²â¶¨ÎïÖÊŨ¶È¼°ÎïÖÊ×é³ÉºÍ·Ö×Ó½á¹¹ÌØÕ÷¡£È»¶ø£¬ÈëÉä¹âÔÚÓë·Ö×ÓÖеĵç×Ó×÷Óùý³ÌÖУ¬»á·¢ÉúÄÜÁ¿µÄ±ä»¯£¬µ¼Ö·¢Éä¹â¶¯Á¿ºÍÄÜÁ¿µÄ±ä»¯£¬¸Ä±äÁ˹âµÄƵÂʺͲ¨³¤£¬·¢É䯵Âʲ»±äµÄ²úÉúÈðÀûÉ¢É䣬ƵÂʱ仯µÄ²úÉúÀÂüÉ¢Éä¡£ÆäÖУ¬ÈðÀûÉ¢ÉäµÄÇ¿¶ÈÒª¸ßÓÚÀÂüÉ¢É䣬ÀÂüÉ¢ÉäÇøÊDz»¹Ì¶¨µÄ£¬µ±¼¤·¢²¨³¤½Ï¸ßʱ£¬ÎïÖÊ·å»á¸½×ÅÔÚÀÂüÉ¢Éä·åÉÏ£¬ËäÈ»£¬¿ÉÒÔͨ¹ýÉèÖÃСµÄ¼¤·¢²¨³¤À´¼õСÀÂüÉ¢ÉäµÄÓ°Ï죬µ«Í¨³£Çé¿öÏÂÐèÒªÑо¿½Ï´ó·¶Î§µÄ¼¤·¢¹âÆ×£¬Òò´Ë£¬»¹ÊÇÐèҪͨ¹ýÆäËû·½·¨È¥³ýÀÂüÉ¢É䣬·ñÔò»á¶Ô·ÖÎö½á¹ûÓÈÆäÊǶ¨Á¿·ÖÎö²úÉúÓ°Ïì¡£´«Í³½µµÍÉ¢ÉäÓ°ÏìµÄ·½·¨Ö÷ÒªÊǽµµÍ»ìºÏÎïµÄŨ¶ÈºÍ¿Û³ý¿Õ°×Ñù£¬µ«ÕâÖÖ·½·¨Ð§¹û²¢²»ÀíÏ롣Ŀǰ£¬Èýά¹âÆ×½ÃÕýµÄÊýѧģÐÍÖ÷ÒªÓÐÆ½ÐÐÒò×Ó·ÖÎöÄ£ÐÍ(PARAFAC)(¼ûÂÛÎÄ Andersen CM, Bro R. Practical aspects of PARAFAC modeling of fluorescenceexcitation-emission data. J Chemometrics, 2003,17 :200-215.¼°ÂÛ JC Bahram, M.,Bro, R.£¬Stedmon£¬C.£¬Afkhami, A.£¬2007. Handling of Rayleigh and Ramanscatter forPARAFAC modeling of fluorescence data using interpolation. J. Chemometr. 20£¬99-105.)ºÍÈýÏßÐÔÄ£ÐÍ(TDM)(¼ûÂÛÎÄ A L Xia£¬H. L. Wu, R. Q. Yu£¬et al. Alternatingpenalty triI inear decomposition algorithm for second-order calibrationwith appIicationto interference-free analysis of excitation-emission matrixfluorescence data[J].¼°ÂÛÎÄ J. Chemom.£¬2005£¬19 :65-76. H L Wu, M Shibukawa£¬K Oguma. An alternating trilinear decomposition algorithm with applicationto calibration of HPLC-DAD for simultaneous determination of overlappedchlorinated aromatic hydrocarbons. [J] J. Chemom.£¬2004£¬76 :1-26.)£¬ÕâЩģÐÍ¿ÉÒÔ³ÆÖ®Îª¶þ½×УÕýÄ£ÐÍ£¬Æä´æÔÚÊÕÁ²Âý¡¢×é·ÖµÄ·Ö½âЧ¹ûÊÜ×é·ÖÊýÓ°Ïì´óµÄȱÏÝ£¬×é·ÖÉèÖõÄËæÒâÐÔ¿ÉÄܻᵼÖÂÊä³ö¹âÆ×Æ«Àëʵ¼Ê¹âÆ×£¬Òò´Ë£¬ÐèÒªÌá³öÒ»ÖÖ²»ÆÆ»µ²âÑù±¾ÉíÌØÕ÷µÄÈýά¹âÆ×½ÃÕý·½·¨¡£
·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷µÄÄ¿µÄÔÚÓÚÌá³öÒ»ÖÖÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÒÔ¿ìËÙ¡¢¸ßЧ¡¢×¼È·¶ÔÈðÀûÉ¢ÉäÓëÀÂüÉ¢Éä½øÐÐУÕý¡£ÎªÊµÏÖÉÏÊöÄ¿µÄ£¬±¾·¢Ã÷ÌṩµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬Ö÷Òª²½ÖèÈçÏÂ
²½ÖèÒ»ÓüÆËã»ú¶ÁÈ¡Êý¾Ý£»Êý¾ÝÀ´Ô´ÓÚÓ«¹â·Ö¹â¹â¶È¼Æ²É¼¯µ½µÄÈýά¼¤·¢/·¢Éä¹âÆ×ͼ»òÕß½«¶þά¼¤·¢¹âÆ×ת»»ÎªÈýά¼¤·¢/·¢Éä¹âÆ×£¬µÃµ½ÔʼÊý¾ÝµÄÈýά¼¤·¢/·¢Éä¹âÆ×¾ØÕó£»²½Öè¶þ 8²ÎÊý·¨Ð£ÕýÈýά¼¤·¢/·¢Éä¹âÆ×8²ÎÊý·¨ÖеÄ8¸ö²ÎÊý·Ö±ðΪɢÉäÇøÔÚÆðʼ·¢É䲨³¤´¦µÄ¼¤·¢²¨³¤eXi,É¢ÉäÇøÔÚÖÕÖ¹·¢É䲨³¤´¦µÄ¼¤·¢²¨³¤ex2,É¢ÉäÇøÔÚÆðʼ¼¤·¢²¨³¤´¦µÄ·¢É䲨³¤emi£¬É¢ÉäÇøÔÚÖÕÖ¹¼¤·¢²¨³¤´¦µÄ·¢É䲨³¤em2£¬É¢ÉäÇø¶¨Òå×ó±ß½çÏßµ÷ÕûµÄÆ½ÒÆÁ¿Cletl1£¬É¢ÉäÇø¶¨Òå×ó±ß½çÏßµ÷ÕûµÄÐýתƫÁ¿detl2£¬É¢ÉäÇø¶¨ÒåÓұ߽çÏßµ÷ÕûµÄÆ½ÒÆÁ¿Cletr1£¬É¢ÉäÇø¶¨ÒåÓұ߽çÏßµ÷ÕûµÄÐýתƫÁ¿detr2£¬ÓÉÕâ8¸ö²ÎÊýÈ·¶¨É¢ÉäÇø±ß½ç£¬È»ºóËÑË÷ÓÐЧµã£¬×îºó½øÐвåÖµ£¬²¢½«²åÖµµÃµ½µÄµã¼¯Ìæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý£»²½ÖèÈýÊä³ö½á¹û¡£ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬½«¶þά¼¤·¢¹âÆ×ת»»ÎªÈýά¼¤·¢/·¢Éä¹âÆ×µÄת»»·½·¨£¬Êǽ«¶þά¼¤·¢¹âÆ×°´ÐдÓСµ½´óÅÅÁУ¬µÚÒ»ÁÐΪ¼¤·¢²¨³¤£¬µÚÒ»ÐÐΪ·¢É䲨 ³¤£¬µÃµ½ÔʼÊý¾ÝµÄÈýά¼¤·¢/·¢Éä¹âÆ×¾ØÕóF£¬ÉèÔʼÈýά¼¤·¢/·¢Éä¹âÆ×µÄ¼¤·¢¹â²¨¶ÎÓÐn¸ö£¬F = (f\£¬f2£¬. . .£¬fn)£¬fjÊǵÚj¸ö¼¤·¢²¨¶ÎµÄ¹âÆ×ÁÐÏòÁ¿£¬ÉèÔʼÈýά¼¤·¢/·¢Éä¹âÆ×µÄ·¢Éä¹â²¨¶ÎÓÐm¸ö£¬Ñù±¾ÊýΪk£¬ÔòFΪmXnX kµÄ¾ØÕó¡£ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬ÓÉÓÚÉ¢ÉäÖ÷ÒªÓÉÈðÀûÉ¢ÉäºÍÀÂüÉ¢Éä×é³É£¬¸ù¾ÝÉ¢ÉäµÄÌØµã£¬É¢ÉäÇøÊÇÓÉһϵÁм¤·¢Óë·¢É䲨³¤³É¹Ì¶¨½Ç¶È×é³ÉµÄ¸ß¹âÆ×ÇøÓò£¬Òò´Ë£¬Æä×óÓұ߽çÒ²ÊÇÏßÐԵģ»É¢ÉäÇøÓÉËÄÌõ±ß½çÏß×é³É£¬×ó±ßÏßL1¡¢ÓÒ±ßÏßLpÉϱßÏßLtºÍϱßÏßLb ;ÆäÖеÄÉϱßÏßLtºÍϱßÏßLbÊÇÓɹâÆ×¾ØÕóµÄ±ß½ç×é³É¶øÈ·¶¨µÄAΪy-ytl =Ic1(X-Xtl), LrΪ= kr (X-Xci),ʽÖУ¬kxΪ×ó±ß½çÏßµÄбÂÊ,krΪÓұ߽çÏßµÄбÂÊ,X0ºÍyQ·Ö±ðΪ±ß½çÏßµÄÒ»¸ö¶Ëµã×ø±êA°´X´ÓСµ½´óµÄÁ½¸ö¶ËµãΪA1 (xl£¬yl)ºÍA2 (x2, y2)£¬Lr°´x´ÓСµ½´óµÄÁ½¸ö¶ËµãSB1Ul^yr )ºÍB2(x2¡¯£¬y2¡¯)¡£ ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬ËÑË÷ÓÐЧµãµÄ²½ÖèÊÇÊ×ÏȶÔÓڱ߽çÏßL1ÉϵĵãS (x£¬y)£¬ËÑË÷i´ÓIµ½m£¬j´ÓIµ½n£¬ÈçS (x, y)µÈÓÚF(i£¬j)£¬Ôòu¢Å=EM¢Å£¬v (j)=EX(j), ff(i, j) = F(i, j);Èô S(x, y) < F(i, j)ÇÒ S(x, y) > F(i+1, j)£¬ÔòÁî u(i)=EM (i), v(j) = EX (j), W (i, j) = F(i, j)£»¶ÔÓڱ߽çÏßLr Éϵĵã S(x, y),Èô z(x, y)µÈÓÚ F(i, j),Ôò u(i) = EM(i), v(j)=EX(j),ff(i, j) = F(i£¬j)£»Èôz (x, y) < F(i, j)ÇÒ z (x, y) > F(i+1, j)£¬ÔòÁî u(i) = EM(i), v(j) = EX(j)£¬W(i, j) = F(i+1, j)¡£ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬²åÖµ²ÉÓÃÏßÐÔ²åÖµÇøÓòQÄÚµÄÊý¾Ýµã¼¯¢ÙÉèΪP(x, y), (x, y)ÓÉÉϲ½µÄS(u, v)ÖÐuºÍvµÄÉÏÏÂÏÞÔÚEX/EM¾ØÕóÉϱéÀúËÑË÷,±´ØJP µÄ²åÖµ¹«Ê½Îªz (x, y) = (X-Xtl) X (z (xend, y) _z (x0, y)) / (xend_xQ) +z (x0, y),µã¼¯¢Ù±éÀúy£¬ÔÙ±éÀúx°´ÕÕÉÏÊö¹«Ê½²åÖµ£¬×îºó£¬½«µã¼¯OÌæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý¡£ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬²½ÖèÈýÊä³ö½á¹û£¬ÔÚMATLABR2009a»·¾³Ï¶ÁȡУÕýºóµÄ¹âÆ×Êý¾Ý£¬»æÖƳöУÕýEX/EM¹âÆ×£¬±È½ÏУÕý½á¹û£¬ÈçУÕý²»³¹µ×£¬Ôòµ÷Õû²ÎÊý£¬¼ÌÐø²½Öè¶þ¡£±¾·¢Ã÷µÄУÕý·½·¨»ùÓÚͼÆ×µÄ±ä»¯ÌØÕ÷¶ÔÉ¢Éä²åÖµ´¦Àí£¬¾ßÓвÙ×÷¼ò±ã¡¢ÈË»ú½»»¥Áé»î¡¢ÔËËãËٶȿ졢ÔËÐÐЧÂʸߡ¢Ð£Õý½á¹û׼ȷ¡¢¿ÉÊÓ»¯Ð§¹ûºÃµÄÌØµã¡£
ͼ1ÊDZ¾·¢Ã÷Èýά¹âÆ×Êý¾ÝУÕý·½·¨µÄÁ÷³ÌʾÒâͼ¡£Í¼2AÊDZ¾·¢Ã÷²ÉÓõÄÀ´×ÔÓÚij¶Ñ·ÊÑùÆ·µÄÈýάӫ¹â¹âÆ×µÄÔʼ¹âÆ×ͼ¡£Í¼2BÊDZ¾·¢Ã÷µÄÈýά¹âÆ×Êý¾ÝУÕýºóµÄ½á¹ûʾÒâͼ¡£
¾ßÌåʵʩÀý·½Ê½±¾·¢Ã÷µÄеÄÈýά¹âÆ×Êý¾Ý¿ìËÙУÕý·½·¨£¬ÊDzÉÓÃÒ»ÖÖ»ùÓÚ8²ÎÊý·¨µÄÈýά¹âÆ× ½ÃÕý·½·¨¡£ÆäÖ÷Òª²½ÖèÈçϲ½ÖèÒ»ÓüÆËã»ú¶ÁÈ¡Êý¾Ý¡£¼ÆËã»úÔÚMATLAB R2009a»·¾³Ï¶ÁÈ¡Èýά¹âÆ×Êý¾Ý£¬Êý¾ÝÀ´Ô´ÓÚÓ«¹â·Ö¹â¹â¶È¼Æ»ò²É¼¯µ½µÄÈýά¼¤·¢/·¢Éä(EX/EM)¹âÆ×ͼ»òÕß½«¶þά¼¤·¢(EX)¹âÆ×ת»»ÎªEX/EM¹âÆ×(ת»»·½·¨½«EX¹âÆ×°´ÐдÓСµ½´óÅÅÁУ¬µÚÒ»ÁÐΪ¼¤·¢²¨³¤£¬µÚÒ»ÐÐΪ·¢É䲨³¤)£¬µÃµ½ÔʼÊý¾ÝµÄ(EX/EM)¹âÆ×¾ØÕóF£¬ÉèÔʼEX/EM¹âÆ×µÄ¼¤·¢¹â²¨¶ÎÓÐn¸ö£¬F = (f\£¬f2£¬. . .£¬fn)£¬fjÊǵÚj¸ö¼¤·¢²¨¶ÎµÄ¹âÆ×ÁÐÏòÁ¿£¬ÉèÔʼEX/EM¹âÆ×µÄ·¢Éä¹â²¨¶ÎÓÐm¸ö£¬Ñù±¾ÊýΪk£¬ÔòFΪmXnX kµÄ¾ØÕó¡£²½Öè¶þ 8²ÎÊý·¨Ð£ÕýEX/EM¹âÆ×¡£²½ÖèÈçÏÂ(I) 8²ÎÊý·¨°üº¬8¸ö²ÎÊý£¬·Ö±ðΪex:> ex2¡¢em^ em2¡¢detl^ detl2¡¢detr^ detr2,ËüÃÇ·Ö±ðÓëÉ¢ÉäÇø·¶Î§µÄÏßÐÔ¿ØÖƶ˵ãÓйأ¬É¢ÉäÇø·¶Î§¿´×÷ÊÇÇøÓòQ£¬ÔòQÓÉËÄÌõ±ß½çÏß×é³É£¬1^(×ó±ßÏß)¡¢1^(ÓÒ±ßÏß)¡¢1^(ÉϱßÏß)ºÍLb (ϱßÏß)£¬LtºÍLbÊÇÓɹâÆ×¾ØÕóµÄ±ß½ç×é³É£¬ÊÇÈ·¶¨µÄ£¬ÐèҪȷ¶¨µÄÊÇL1ºÍLpÁîL1Ϊy-yQ = Ic1(X-Xtl)ɽΪy-yQ = kjx-x¡£)£¬¼ÙÉè,L1°´x´ÓСµ½´óµÄÁ½¸ö¶ËµãΪA1Ul,yl)ºÍ A2(x2£¬y2)£¬Lr °´ X ´ÓСµ½´óµÄÁ½¸ö¶ËµãSB1(Xl^yr) B2(x2,,y2>) £» (2)ÉÏÊö¹ý³ÌÖ»ÊÇÈ·¶¨É¢ÉäÇø±ß½ç²ÎÊý£¬ÏÂÒ»²½ÐèÒªËÑË÷ÓÐЧµãÊ×ÏȶÔÓڱ߽çÏßL1ÉϵĵãS(x£¬y)£¬ËÑË÷i´ÓIµ½m, j´ÓIµ½n,¿´S(x, y)ÊÇ·ñµÈÓÚF(i, j),ÈçÏàµÈ,Ôòu(i) = EM¢Å£¬v(j)=EX(j), W(i, j) = F(i, j),·ñÔò,Èô S(x, y) < F(i, j)ÇÒ S(x, y) > F(i+1, j)£¬ÔòÁî u(i)=EM(i), v(j) = EX (j) ,ff(i, j) = F(i, j);¶ÔÓڱ߽çÏß Lr Éϵĵã S (x, y),Èô z (x, y)µÈÓÚF(i, j),±´ØJ u(i) = EM(i), v(j) = EX(j), W(i, j) = F(i, j),·ñÔò£¬Èô z (x, y) < F(i, j)ÇÒz(x, y) > F(i+1, j)£¬ÔòÁî u(i) = EM¢Å,v(j) = EX(j), W(i, j) = F(i+1, j) £» (3)×îºó£¬½øÐвåÖµ£¬ÓÉÓÚÉ¢ÉäÇø·¶Î§Ò»°ã¶¼²»´ó£¬Òò´Ë¿É²ÉÓÃÏßÐÔ²åÖµÇøÓòQÄÚµÄÊý¾Ýµã¼¯OÉèΪP(x, y), (X, y)ÓÉÉϲ½µÄS(u,v)ÖÐuºÍvµÄÉÏÏÂÏÞÔÚEX/EM¾ØÕóÉϱéÀúËÑË÷,ÔòPµÄ²åÖµ¹«Ê½Îªz(x, y) = (x-x0) X (z (xend, y)-z(x¡££¬y))/ (xend_x¡£)+z (x¡££¬y),µã¼¯¢Ù±éÀú y£¬ÔÙ±éÀúx°´ÕÕÉÏÊö¹«Ê½²åÖµ£¬×îºó£¬½«µã¼¯OÌæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý¡£²½ÖèÈýÊä³ö½á¹û¡£ÔÚMATLAB R2009a»·¾³Ï¶ÁȡУÕýºóµÄ¹âÆ×Êý¾Ý£¬»æÖƳöУÕýEX/EM¹âÆ×£¬±È½ÏУÕý½á¹û£¬ÈçУÕý²»³¹µ×£¬Ôòµ÷Õû²ÎÊý£¬¼ÌÐø²½Öè¶þ¡£ÉÏÊö¹ý³ÌÖУ¬¶ÔÓÚÈðÀûÉ¢É䣬²½Öè2ÖеÄX1 = EM(I), Y1 = ex1£» X2 = env y2 =EX (end), x/ = EM(I), y/ = ex2, x2£¬= em2, y2£¬=EX (end), EM(I)ºÍ EX (end)·Ö±ðÊÇ EMµÄµÚÒ»¸öÊýÖµºÍEXµÄ×îºóÒ»¸öÊýÖµ,ÊÇÒÑÖªµÄ£¬ÐèҪȷ¶¨µÄÊÇeXi^Xyempem2ËĸöÊý,ÕâËĸöÊý·Ö±ð¶ÔӦɢÉäÇø×óÓұ߽çÏßÓëEXÖáºÍEMÖáµÄ½»µã´¦µÄEXºÍEMÖµ£¬ÐèÒª´ÓÔʼEX/EM¹âÆ×ͼÉ϶ÁÈ¡£¬ÕâÑù¾Í»ñµÃÁËÇøÓòQµÄÁ½¸ö±ß½çÏߣ¬Îª±£Ö¤L1ºÍLÄÜÍêÈ«°üÀ¨ÇøÓòQ£¬¸ø³ö±ß½çÆ½ÒÆºÍÐýתÔöÁ¿(Ietlpdetlydetr1ºÍdetr2,Æä×÷ÓÃÊǵ±L1ºÍL1^δÄÜÍêÈ«°üÀ¨ÇøÓòQʱ£¬½«L1ºÍL,·Ö±ðÏò×ó¡¢ÓÒÆ½ÒÆCletl1 Jetr1£¬²¢×÷Ò»¶¨µÄÐýת±ä»»¡£¶ÔÓÚÀÂüÉ¢Éä,X1 =GIii1, Y1 = EX(I)£¬X2 = EM(end)£¬y2 = ex^ x/ = em2, y/ = EX(I)£¬x2£¬= EM(end)£¬y2£¬ex2,·½·¨ÓëÉÏÊöÏàͬ¡£ÏÂÃæ½áºÏ¸½Í¼¶Ô±¾·¢Ã÷µÄʵʩ·½Ê½£¬×ö¾ßÌå˵Ã÷¡£Çë²ÎÔÄͼ1£¬ÊDZ¾·¢Ã÷µÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨µÄÁ÷³ÌʾÒâͼ¡£Êý¾Ý²É¼¯ºÍ×¼±¸Ê×ÏÈ£¬²É¼¯É¨ÃèÈýά¹âÆ×Êý¾Ý£¬Í¼2AµÄÔʼ¹âÆ×ÊÇÀ´×ÔÓÚij¶Ñ·ÊÑùÆ·µÄÈýάӫ¹â¹âÆ×ͼ£¬´ÓͼÖпÉÒÔ¿´³ö½ÏΪÃ÷ÏÔµÄÁ½¸öÉ¢Éä·åSplºÍSp2¡£½«Èýά¹âÆ×Êý¾Ý°´¼¤·¢¹âÆ×ΪÁÐÏòÁ¿¡¢¼¤·¢²¨³¤´ÓСµ½´óµÄ˳ÐòÊäÈëexcelÖУ¬µÚÒ»ÐÐΪ¼¤·¢²¨³¤£¬µÚÒ»ÁÐΪ·¢É䲨³¤¡£µ±ÑùÆ·Êý´óÓÚIʱ£¬½ô½ÓÉÏÊö×îºóÒ»ÐпªÊ¼ÊäÈ룬¸ñʽÓëÉÏÊöÏàͬ£¬Ö»ÊÇÆðʼÐÐÖ±½Ó´Ó¹âÆ×Ç¿¶È¿ªÊ¼£¬²»ÔÙÊäÈ뼤·¢²¨³¤ÐС£Ð£Õý²ÎÊýµÄʶ±ðÔÚMATLABÖÐÓÃcontourfÃüÁî»æÖÆÈýά¹âÆ×µÄµÈ¸ßÏßͼ£¬¸ÃÑù±¾Ôʼ¹âÆ×ͼ²Î¼ûͼ2AËùʾ£¬´ÓͼÖпÉÒÔ¿´³öÉ¢ÉäÇøµÄλÖ㬰üº¬Á½¸öÉ¢ÉäÇø£¬×ó²àµÄÈðÀûÉ¢Éä×ó¡¢Óұ߽çÓëEXÖáµÄ½»µã´¦ÄÚ²¿µÄex·Ö±ð½üËÆÎª255nmºÍ260nm£¬ÓëEMÖáµÄ½»µã´¦ÄÚ²¿µÄem·Ö±ð½üËÆÎª450nmºÍ455nm,×ó±ß½çÏßµÄÉÏ϶ËÔöÁ¿·Ö±ðΪ_2nmºÍ2nm,Õâ»ù±¾¿ÉÒÔ±£Ö¤ÈðÀûÉ¢ÉäÇøÕýºÃ°üº¬½øÀ´£»ÓÒ²àµÄÀÂüÉ¢Éä×ó¡¢Óұ߽çÓëEXÖáµÄ½»µã´¦ÄÚ²¿µÄex·Ö±ð½üËÆÎª260nmºÍ280nm£¬ÓëEMÖáµÄ½»µã´¦ÄÚ²¿µÄem·Ö±ð½üËÆÎª390nmºÍ410nm£¬×ó±ß½çÏßµÄÉÏ϶ËÔöÁ¿·Ö±ðΪInmºÍ-lnm£¬Õâ»ù±¾°üÀ¨ÁËÀÂüÉ¢ÉäÇø¡£É¢ÉäÇøÐ£ÕýÔÚMATLABÖвÉÓÃforÑ»·£¬ÔÚEXºÍEMÇø¶ÎËÑË÷É¢ÉäÇøµÄ±ß½çÓëÖ±Ïß½»µã£¬Èç²»Ïཻ£¬ÔòËÑË÷É¢ÉäÇøÍâµÄÒ»µã´úÌæ£¬½«ÉÏÊö±ß½çµã´æ´¢ÖÁ¾ØÕóVÖУ¬V¼´Îª°üÀ¨ÍêÕûÉ¢ÉäÇøÇÒEXºÍEM×ø±êÓëÔʼ¹âÆ×¶ÔÓ¦µÄ±ß½çÇø£¬ËÑË÷Õû¸ö¹âÆ×Çø¼äÕÒµ½Î»Óڱ߽çVÄÚ²¿ËùÓеÄEXºÍEM£¬È»ºóÔÚMATLABÖжÔEX½øÐÐÑ»·£¬Ñ»·µÄÄÚ²¿ÎªV±ß½çΪ¿ØÖƵãµÄÇø¼äÄڵĹâÆ×Ç¿¶ÈÏßÐÔ²åÖµ£¬×îºóÓÃcontourfÃüÁî»æÖÆÐ£ÕýºóµÄÈýά¹âÆ×ͼ£¬¼ûͼ2B¡£±È½Ïͼ2AºÍͼ2B¿ÉÒÔ¿´³ö£¬·ÇÉ¢ÉäÇøÊý¾Ý±£ÁôÁ¼ºÃ£¬É¢ÉäÇøµÈ¸ßÏßÁ¬Ðø¹â»¬£¬ÇÒÓëÔʼͼÆ×Ò»Ö£¬Òò´Ë¸Ã·½·¨ÔÚУÕýÈýά¹âÆ×ÉÏÊǽÏΪ׼ȷµÄ¡£
ȨÀûÒªÇó
1.Ò»ÖÖÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬Ö÷Òª²½ÖèÈçϲ½ÖèÒ»ÓüÆËã»ú¶ÁÈ¡Êý¾Ý£»Êý¾ÝÀ´Ô´ÓÚÓ«¹â·Ö¹â¹â¶È¼Æ²É¼¯µ½µÄÈýά¼¤·¢/·¢Éä¹âÆ×ͼ»òÕß½«¶þά¼¤·¢¹âÆ×ת»»ÎªÈýά¼¤·¢/·¢Éä¹âÆ×£¬µÃµ½ÔʼÊý¾ÝµÄÈýά¼¤·¢/·¢Éä¹âÆ×¾ØÕó£»²½Öè¶þ 8²ÎÊý·¨Ð£ÕýÈýά¼¤·¢/·¢Éä¹âÆ×8²ÎÊý·¨ÖеÄ8¸ö²ÎÊý·Ö±ðΪɢÉäÇøÔÚÆðʼ·¢É䲨³¤´¦µÄ¼¤·¢²¨³¤eXi,É¢ÉäÇøÔÚÖÕÖ¹·¢É䲨³¤´¦µÄ¼¤·¢²¨³¤ex2,É¢ÉäÇøÔÚÆðʼ¼¤·¢²¨³¤´¦µÄ·¢É䲨³¤emi£¬É¢ÉäÇøÔÚÖÕÖ¹¼¤·¢²¨³¤´¦µÄ·¢É䲨³¤em2£¬É¢ÉäÇø¶¨Òå×ó±ß½çÏßµ÷ÕûµÄÆ½ÒÆÁ¿Cletl1,É¢ÉäÇø¶¨Òå×ó±ß½çÏßµ÷ÕûµÄÐýתƫÁ¿detl2£¬É¢ÉäÇø¶¨ÒåÓұ߽çÏßµ÷ÕûµÄÆ½ÒÆÁ¿Cletr1£¬É¢ÉäÇø¶¨ÒåÓұ߽çÏßµ÷ÕûµÄÐýתƫÁ¿Cletr2£¬ÓÉÕâ8¸ö²ÎÊýÈ·¶¨É¢ÉäÇø±ß½ç£¬È»ºóËÑË÷ÓÐЧµã£¬×îºó½øÐвåÖµ£¬²¢½«²åÖµµÃµ½µÄµã¼¯Ìæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý£»²½ÖèÈýÊä³ö½á¹û¡£
2.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬½«¶þά¼¤·¢¹âÆ×ת»»ÎªÈýά¼¤·¢/·¢Éä¹âÆ×µÄת»»·½·¨£¬Êǽ«¶þά¼¤·¢¹âÆ×°´ÐдÓСµ½´óÅÅÁУ¬µÚÒ»ÁÐΪ¼¤·¢²¨³¤£¬µÚÒ»ÐÐΪ·¢É䲨³¤£¬µÃµ½ÔʼÊý¾ÝµÄÈýά¼¤·¢/·¢Éä¹âÆ×¾ØÕóF£¬ÉèÔʼÈýά¼¤·¢/·¢Éä¹âÆ×µÄ¼¤·¢¹â²¨¶ÎÓЦǸö£¬F = (f1; f2£¬. . .£¬fn)£¬fjÊǵÚj¸ö¼¤·¢²¨¶ÎµÄ¹âÆ×ÁÐÏòÁ¿£¬ÉèÔʼÈýά¼¤·¢/·¢Éä¹âÆ×µÄ·¢Éä¹â²¨¶ÎÓÐm¸ö£¬Ñù±¾ÊýΪk£¬ÔòFΪmXnXkµÄ¾ØÕó¡£
3.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬É¢ÉäÇøÓÉËÄÌõ±ß½çÏß×é³É£¬×ó±ßÏßL1¡¢ÓÒ±ßÏßLpÉϱßÏßLtºÍϱßÏßLb ;ÆäÖеÄÉϱßÏßLtºÍϱßÏßLbÊÇÓɹâÆ×¾ØÕóµÄ±ß½ç×é³É¶øÈ·¶¨µÄ£¡L1Ϊy-yd = kx (X-Xtl), LrΪ= kr (X-Xtl),ʽÖÐ,Ii1Ϊ×ó±ß½çÏßµÄбÂÊ, krΪÓұ߽çÏßµÄбÂÊ£¬X0ºÍI0·Ö±ðΪ±ß½çÏßµÄÒ»¸ö¶Ëµã×ø±êA1°´X´ÓСµ½´óµÄÁ½¸ö¶Ëµã SA1(XLyl)ºÍ A2 (x2£¬y2)£¬Lr °´ X ´ÓСµ½´óµÄÁ½¸ö¶ËµãSB1Ul^yr )ºÍ B2(x2¡¯£¬y2¡¯)¡£
4.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬ËÑË÷ÓÐЧµãµÄ²½ÖèÊÇÊ×ÏȶÔÓڱ߽çÏßL1ÉϵĵãS(x, y),ËÑË÷i´ÓIµ½m, j´ÓIµ½¦Ç,ÈçS(x, y)µÈÓÚF(i, j),±´U u¢Å =EM¢Å£¬v(j) = EX(j), W(i, j) = F(i, j);Èô S(x, y) < F(i, j)ÇÒ S(x, y) > F(i+1, j)£¬ ÔòÁî u(i) = EM¢Å£¬v(j) = EX(j),ff(i, j) = F(i£¬j)£»¶ÔÓڱ߽çÏß Lr Éϵĵã S(x,y),Èô z(x,y)µÈÓÚF(i, j),Ôòu(i) = EM(i), v(j) = EX(j)£¬ W(i, j) = F(i, j)£»Èô z(x£¬y) <F(i£¬j)ÇÒ z(x£¬y) > F (i+1£¬j)£¬ÔòÁî u (i) = EM(i),v(j) = EX(j),ff(i, j) = F (i+1, j)¡£
5.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬²åÖµ²ÉÓÃÏßÐÔ²åÖµÇøÓò¦¸ ÄÚµÄÊý¾Ýµã¼¯¦µÉèΪP(x£¬y)£¬(x£¬y)ÓÉÉϲ½µÄS (u£¬v)ÖÐuºÍvµÄÉÏÏÂÏÞÔÚEX/EM¾ØÕóÉϱéÀúËÑË÷£¬Ôò P µÄ²åÖµ¹«Ê½Îªz (X, y) = (X-Xci) X (z (xend, y) _z (x0, y)) / (xend-x0) +z (x0, y), µã¼¯¦µ±éÀúy,ÔÙ±éÀúx°´ÕÕÉÏÊö¹«Ê½²åÖµ,×îºó,½«µã¼¯¦µÌæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý¡£
6.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬ÆäÖУ¬²½ÖèÈýÊä³ö½á¹û£¬ÔÚMATLAB R2009a»·¾³Ï¶ÁȡУÕýºóµÄ¹âÆ×Êý¾Ý£¬»æÖƳöУÕýEX/EM¹âÆ×£¬±È½ÏУÕý½á¹û£¬ÈçУÕý²»³¹µ×£¬Ôòµ÷Õû²ÎÊý£¬¼ÌÐø²½Öè¶þ¡£
È«ÎÄÕªÒª
Ò»ÖÖÈýά¹âÆ×Êý¾ÝУÕý·½·¨£¬Ö÷Òª²½ÖèÈçϲ½ÖèÒ»ÓüÆËã»ú¶ÁÈ¡Êý¾Ý£»Êý¾ÝÀ´Ô´ÓÚÓ«¹â·Ö¹â¹â¶È¼Æ²É¼¯µ½µÄÈýά¼¤·¢/·¢Éä¹âÆ×ͼ»òÕß½«¶þά¼¤·¢¹âÆ×ת»»ÎªÈýά¼¤·¢/·¢Éä¹âÆ×£¬µÃµ½ÔʼÊý¾ÝµÄÈýά¼¤·¢/·¢Éä¹âÆ×¾ØÕó£»²½Öè¶þ8²ÎÊý·¨Ð£ÕýÈýά¼¤·¢/·¢Éä¹âÆ×ÓÉÕâ8¸ö²ÎÊýÈ·¶¨É¢ÉäÇø±ß½ç£¬È»ºóËÑË÷ÓÐЧµã£¬×îºó½øÐвåÖµ£¬²¢½«²åÖµµÃµ½µÄµã¼¯Ìæ»»ÔÀ´É¢ÉäÇøµÄÊý¾Ý£»²½ÖèÈýÊä³ö½á¹û¡£±¾·¢Ã÷Õë¶ÔSTOCKSÎ»ÒÆÎÊÌâ²ÉÓÃÁé»îµÄ²ÎÊýÊäÈ뷽ʽ£¬¿É´¦Àí²»Í¬µÄÉ¢ÉäÇø£¬±¾·¢Ã÷µÄ·½·¨¿ìËÙ¡¢×¼È·¡¢±ã½Ý¡¢¸ßЧ£¬ÊÊÓÃÓÚEX/EMµÄÈðÀûÉ¢ÉäºÍÀÂüÉ¢ÉäµÄУÕý¡£
Îĵµ±àºÅG01N21/64GK102998294SQ20121055865
¹«¿ªÈÕ2013Äê3ÔÂ27ÈÕ ÉêÇëÈÕÆÚ2012Äê12ÔÂ20ÈÕ ÓÅÏÈȨÈÕ2012Äê12ÔÂ20ÈÕ
·¢Ã÷Õßϯ±±¶·, ºÎСËÉ, Å˺ìÎÀ, ÐíÆä¹¦, κ×ÔÃñ ÉêÇëÈË:Öйú»·¾³¿ÆÑ§Ñо¿Ôº