专利名称:一种无菌检查方法及其使用的全封闭集菌安瓿培养器的制作方法
技术领域:
本发明涉及药品、食品、生物制品、医疗器械等无菌产品检查领域,具体涉及一种 无菌检查方法及其使用的全封闭集菌安瓿培养器。
背景技术:
无菌检查是确保无菌产品使用安全的必检项目,也是决定无菌产品生产周期的重 要环节之一。如在药品领域中,各国药典对注射剂无菌检查均有严格要求,并基本形成了国 际一致的检查标准与操作规程,有效地提高了制剂无菌保证水平。但是现行无菌检查方法具有一定的局限性。首先,无菌检查周期较长,制约企业生 产效率的提高各国药典均规定无菌检查的培养周期为14天,如果不能判定结果的需经转 种培养7天,如果判断出现“假阳性”结果则需复试一次,延长了产品的出厂等待时间和生 产周期。其次,现行药典中对无菌检查的结果判断为肉眼观察微生物大量生长所产生的培 养基浑浊,受观察人员的操作经验影响较大,具有一定的主观性,自动化程度低。另外,单纯 依靠培养基浑浊判定样品无菌状况仍存在以下风险肉眼观察对与非微生物生长引起的培 养基浑浊则不易排除,对于生长缓慢、在规定检查时间内不引起培养基浑浊的微生物污染 更无从识别,由此可能产生假阳性和假阴性判断,影响结果的准确性和可靠性。鉴于上述问题,建立一种能够快速识别无菌制剂微生物污染的方法,提高检查灵 敏度、准确度、缩短检查时间、提高检查自动化程度,以补充或替代现有方法,已经成为国内 外无菌制剂研究的关注焦点,并形成了微生物激光散射检测法、生物发光检测法、PCR扩增 检测法等新方法。以上各种方法提高了微生物污染的检查能力;但是由于受微生物粒径 大小、其他微粒干扰、操作复杂、仪器设备及试剂昂贵或方法缺乏普适性(仅针对某种微生 物,检测面窄)等因素的制约影响其推广应用,因而需要根据微生物的生命、生长特征尝试 建立新的检测方法。根据生物热力学理论,一切生命活动均伴随着能量和物质的代谢与转化,这种能 量能够为微量量热系统所监视。微量量热法是一种灵敏、快速、操作简便、多通道、实时在线 监测的仪器系统,近年来发明人所在课题组应用微量量热法检测微生物生长过程中的热效 应,用于药物质量控制和效用评价取得了一定的经验和成果。研究表明,在适宜的条件下, 微生物的生长呈现明显的规律性和特征性,由此启示可以尝试采用微量量热法建立一种无 菌检查的新方法。本发明的原理是,利用微量量热仪可检测微生物生长过程中的热效应的功能,在 微量量热仪中录制不同种类不同生存状态微生物的指纹特征热谱曲线,建立数据分析的标 准档案。然后录制待测样品的热谱曲线,如果样品未灭菌或灭菌不彻底,被微生物污染,在 样品的热谱曲线中就会出现微生物生长的趋向,这时与已经建立的标准档案进行比较,即 可快速将已经被污染的样品选检出来,并可初步分辨出样品被何种微生物污染。微量量热仪通常操作是将微生物菌种置入特定的培养基的微量量热安瓿中,然后 将安瓿置于微量量热仪检测通道中,记录微生物生长产生的热量变化。但在使用微量量热仪进行无菌检测时,存在一个操作环节的重大缺陷,即进行无菌检查时,由于微量量热仪中 配套使用的安瓿结构无法实现样品和培养基注入时的密封操作,不能满足产品微生物污染 检查(无菌检查)所要求的隔绝外界环境(避免二次污染)、富集微生物同时消除产品抑菌 性能的要求,导致操作过程中可能因外界因素污染样品,而致使做出假阳性判断。因此,使 用微量量热法进行无菌检查时,需要对微量量热仪的安瓿进行改进。本发明全封闭集菌安 瓿培养器的设计原则包括(1)无菌性采用合适灭菌方法确保集菌器自身的无菌性;(2) 密封性确保系统内部与外界环境的有效隔离;(3)集菌性配置必要的集菌装置,实现对 样品微生物富集及抑菌性消除,并可根据待检样品性质配置适宜的滤膜;(4)热敏性系统 材料能够使微生物生长代谢热量能够为量热仪灵敏地检测;(5)耐压性系统能够满足集 菌过程负压要求并避免微生物损伤;(6)耐受性系统应能满足无菌检查样本量需要,有足 够的检查能力;(7)简便性系统应操作简便,自动化性能好,具自动提示结果功能;(8)经 济型系统应经济易得,可批量生产并推广应用。
发明内容
本发明的目的是为了解决现有无菌检查方法周期较长、灵敏度低、检测结果受观 察人员的主观性影响较大、以及微量量热仪中安瓿不能实现全封闭无菌操作的缺陷。实现上述目的的本发明的技术方案为,一种无菌检查方法,其特征在于,该方法包 括以下步骤(1)选取菌种和培养基选取不同种类的菌种及适合菌种生长的无菌培养基;(2)制备菌液将步骤(1)选取的菌种在无菌培养基中进行培养,获得各个菌种不 同浓度、不同生存状态的菌液,作为录制菌种的指纹特征热谱曲线的阳性控制物;(3)录制各个菌种的指纹特征热谱曲线作为鉴别特征将步骤(2)获得的菌液置 于微量量热仪中,记录各个菌种不同浓度、不同生存状态的菌液的热谱曲线,获得不同菌种 的指纹特征热谱曲线;(4)提取步骤(3)所获热谱曲线的热动力学参数,确定菌种阳性判定指标;(5)对待测制剂进行无菌性检查将待测制剂样品进行过滤,用无菌清洗液冲洗 滤膜上的过滤物;将样品的过滤物和培养基混合后置入微量量热仪的检测通道,记录其热 谱曲线;通过与步骤(3)的不同菌种的指纹特征热谱曲线以及步骤(4)的菌种阳性判定指 标进行比对,检查待测制剂是否被微生物污染。在以上步骤中,步骤(1)至步骤(4)是建立检测标准的步骤,当通过实验获得了各 个菌种的指纹特征热谱曲线和相关的热动力学参数,并建立起菌种阳性判定指标后,这些 图谱及数据公式就可以作为以后检测工作的标准来使用。也就是说,步骤(1)至步骤(4) 建立标准的操作只需要一次,标准建立后,以后对待测样品的检测只需要实施步骤(5)的 操作程序并与标准进行比较即可。步骤(2)中,获得各个菌种不同浓度菌液的方法是,将菌种新鲜培养物过滤洗脱 得到洗脱液,用0.9%灭菌氯化钠溶液将洗脱液按10倍系列稀释;获得各个菌种不同生 存状态的菌液的方法是,将培养物过滤洗脱得到洗脱液,将洗脱液分别置于_70°C冰箱和 60°C水浴中保持2h后,再用0. 9%灭菌氯化钠溶液按10倍系列稀释。步骤(3)中将菌液置于微量量热仪中的具体步骤是
(3-1)按步骤(2)的方法取各菌种 10_3、10_5、10_7、10_8、10_9、IO-ltlUO-11 倍系列浓度 的稀释培养物;(3-2)将等体积的各菌种的系列浓度稀释培养物加入步骤(1)中所述的无菌培养 基中,作为微量量热仪的阳性检测通道;(3-3)另取一份无菌培养基,作为微量量热仪的空白对照通道。步骤(4)所述热谱曲线的热动力学参数包括,随时间变化的检测通道热功率Pi及 与其同时刻的空白对照通道热功率Po、最大发热功率Pmax、达到最大发热功率时间Tmax、总发 热量Httrtal,以及各曲线指数生长段每15min斜率k。步骤⑷所述菌种阳性判定指标可以是记录k彡0的出现时间,并以k彡0为检 出样品微生物污染的必要条件,同时建立微生物生长的阳性判断时间指标。微生物生长的阳性判断时间指标可以按以下方法确定检测通道热功率?1与同时 刻空白通道热功率P。之间的差值大于P。绝对值3倍的时间为检出样品微生物污染的时间 点(Td),即Td = Time [ (Pi-P0) / | Ptl | 彡 3]。步骤(5)中将样品过滤物和培养基进行混合时,按照适合菌种生长的条件选择培养基。步骤(5)中将样品过滤物和培养基混合并置入微量量热仪的安瓿中时,安瓿中按 照体积比例保留促使菌种快速生长的气体环境。优选方案是,步骤(5)将安瓿放入微量量热仪的检测通道时,检测通道的温度按 照适合菌种生长的温度设定。步骤(5)将安瓿放入微量量热仪的检测通道时,检测通道的温度可以设定为 23°C 37°C。本发明还包括一种实施上述方法时使用的全封闭集菌安瓿培养器,所述集菌安 瓿培养器由集菌安瓿系统、加样加液系统和蠕动排液系统组成,所述加样加液系统与集菌 安瓿系统之间通过进液管连接在一起,集菌安瓿系统和蠕动排液系统通过排液管连接在一 起。集菌安瓿系统包括安瓿瓶身,在安瓿瓶身的瓶口上密封固定橡胶密封塞,进液管、 排液管和排气管穿透橡胶密封塞后伸入安瓿瓶身内,安瓿瓶身内置一滤器,滤器的底部铺 有滤膜,滤器的顶部与安瓿瓶内的进液管口连接,安瓿瓶内的排液管口越过滤器伸至安瓿 瓶底部,在安瓿瓶身外部的进液管和排液管上分别安装有进液控制阀和排液控制阀,排气 管顶部连接空气过滤器。加样加液系统包括样品/培养基容器和带空气过滤器的进液装置。蠕动排液系统包括一蠕动泵,蠕动泵的出口连接废液收集器。在进液控制阀和加样加液系统之间的进液管上安装一进液管道连接器,断开该管 道连接器时,可将加样加液系统与集菌安瓿系统分离;在排液控制阀和蠕动排液系统之间 的排液管上安装一排液管道连接器,断开该管道连接器时,可将蠕动排液系统与集菌安瓿 系统分离。进液管道连接器和排液管道连接器为塞口式,进液管道连接器和排液管道连接器 的塞口可对接形成密封管道连接器。安瓿瓶身为玻璃结构或硬质塑料结构,在安瓿瓶身上标有刻度线。
进液管、排液管和排气管为硅胶软管,进液控制阀、排液控制阀和排气控制阀为卡 口阀。排气管为顶端带空气过滤装置的不锈钢针头。进液管伸入安瓿瓶身的部分可以是上细下粗的锥形管,滤器固定在锥形管的下 端。所述锥形管的上端外表面为螺纹结构,橡胶密封塞的下表面固定一内螺纹接口,锥形管 可通过螺纹结构与该内螺纹接口连接。本发明微量量热无菌检测法与现有技术的集菌观察法相比,具有以下优点①检 测时间上,微量量热法快于集菌观察法微量量热法检出时间集中分布在0 18h,而集菌 观察法判断阳性时间集中分布在10 36h ;②灵敏度上,微量量热法高于集菌观察法微 量量热法可以检出低于10_1(1 10_"稀释度的微生物生长,而观察法未检出同等条件下该 稀释度的阳性菌生长;③定量性及指纹特征鉴别性上,微量量热法优于观察法微量量热 法可提供具有微生物菌种指纹特征性的生长热谱曲线及可定量的热动力学参数及阳性菌 检出判断标准方程,而观察法仅依靠肉眼观察培养基浑浊度,不可定量且无菌种判断特征; ④自动化及准确性上,微量量热法优于观察法微量量热法通过对微生物生长过程中热量 代谢的检测与记录,方法灵敏准确,并可通过对热动力学参数的分析报告阳性检查结果,自 动化程度高;同时可以避免集菌观察法反复人工介入观察带来的工作量增加及再次污染风 险;避免常规观察方法中可能存在的非微生物生长引起培养基浑浊的假阳性判断(如药物 与培养基混合产生的浑浊等)及微生物生长不引起培养基浑浊的假阴性判断(如白色念珠 菌、枯草芽孢杆菌生长过程中并不引起培养基的显著浑浊,结果较难断定)。本发明全封闭集菌安瓿培养器和普通微量量热安瓿相比,可以在全封闭无菌体系 中实现样品微生物富集(集菌功能)、冲洗薄膜消除样品抑菌活性干扰(抗扰功能)、加入 培养基培育复苏微生物(培养功能)以及置入量热仪通道记录微生物生长热代谢状况(记 录功能),从取样到培养整个操作过程都排除了外界因素污染样品或培养基的可能性,消除 样品误判为微生物污染阳性的可能(假阳性),显著提高了检测的准确性。本发明全封闭集菌安瓿培养器与现有无菌检查集菌培养器相比的优点是①本发 明可用于微量量热法无菌检查,而现有无菌检查集菌器仅适合普通观察法;②较之现有集 菌培养器依靠肉眼观察,需要重复多次观察(14天)、劳动量大、人力成本高的缺点;本发 明通过微量量热仪实时、在线、多通道、自动化地记录检测样品中微生物生长代谢热量的变 化,自动化程度高,可以降低劳动强度和人力成本;③采用本发明通过微量量热法检查样品 微生物污染物的热量代谢,可以更灵敏、快速地判断微生物污染;较现有现有集菌培养器依 靠肉眼观察培养基浑浊的的方法更为灵敏,能够早期检出微生物污染,从而节约检查时间; ④采用本发明通过微量量热法检查样品微生物污染物的热量代谢,可以结合样品无菌状态 定量判别方程,从而准确、定量地判断样品的无菌状态;较之现有的采用肉眼观察培养基浑 浊方法判断样品无菌状态的集菌培养器法,方法更为准确,能够有效避免现有方法肉眼观 察可能产生的结果误判;⑤采用本发明通过微量量热法可以全程记录检查样品微生物污染 物的热量代谢曲线,具有一定的特征指纹性;较之现有仅提供结果判断的肉眼观察法,能够 提供更全面的信息,并可用于污染微生物种类的初步鉴定。
图1是用本发明方法录制的不同浓度金黄色葡萄球菌生长图谱;图2是用本发明方法录制的不同浓度大肠埃希菌生长图谱;图3是用本发明方法录制的不同浓度铜绿假单胞菌生长图谱;图4是用本发明方法录制的不同浓度生孢梭菌生长图谱;图5是用本发明方法录制的不同浓度志贺氏痢疾杆菌生长图谱;图6是用本发明方法录制的不同浓度枯草芽孢杆菌生长图谱;以上图中,A 无菌硫乙醇酸盐流体培养基; B :10_3稀释度;C 10_5 稀释度;D 10_7 稀释度;E 10_8 稀释度;F 10_9 稀释度;G 10_1Q 稀释度;H 10—11 稀释度;图7是用本发明方法录制的不同浓度黑曲霉生长图谱;图8是用本发明方法录制的不同浓度白色念珠菌生长图谱;以上图中,A 无菌改良马丁培养基; B :10_3稀释度;C 10_5 稀释度;D 10_7 稀释度;E 10_8 稀释度;F 10_9 稀释度;G 10_1Q 稀释度;H 10—11 稀释度;图9是用本发明方法录制的不同状态金黄色葡萄球菌生长图谱;图中,A 无菌硫乙醇酸盐流体培养基; B 无菌生理盐水;C :35°C 1(Γ5 稀释度;D :35°C 1(Γ7 稀释度;E :-70°C Kr5 稀释度;F :_70°C 10"稀释度;G :60°C 1(Γ5 稀释度;H :60°C 1(Γ7 稀释度;图10是对不同灭菌条件复方茵陈注射液使用本发明方法进行无菌检查的热谱曲线;图中,A 正常样品+硫乙醇酸盐流体培养基;B 金黄色葡萄球菌+硫乙醇酸盐流体培养基;C 未灭菌样品+硫乙醇酸盐流体培养基;D 灭菌不彻底样品+硫乙醇酸盐流体培养基;E 正常样品+改良马丁培养基;F 白色念珠菌+改良马丁培养基;G 未灭菌样品+改良马丁培养基;H;灭菌不彻底样品+改良马丁培养基;图11本发明无菌检查法阳性判断指标的各参数关系的示意图;图中,Pi 供试样品热功率;Ptl 与Pi同时刻的无菌培养基热功率;k 热谱曲线每15min段斜率;Te 指数生长期 k ≥ 0 的出现时间(Time of exponentialgrowth);Td 检出样品微生物污染阳性的时间点(Time of Detection);图12是本发明全封闭集菌安瓿培养器的结构图;图13是进液管道连接器和排液管道连接器塞口对接形成密封管道连接器,并拔出排气管后的全封闭集菌安瓿培养器结构示意图;
图14是进液管伸入安瓿瓶身内的部分变形为锥形管时的结构示意图 图15是锥形管的结构示意以上图中,1、安瓿瓶身;
3、橡胶密封塞; 5、排液管; 7、进液控制阀; 9、刻度线; 11、进液管道连接器; 13、蠕动泵; 15、滤膜; 17、排气控制阀; 19、密封管道连接器;
21、锥形管上端的螺纹结构;
22、橡胶密封塞的内螺纹接口。
2、滤器; 4、进液管; 6、排气管; 8、排液控制阀; 10、进液装置; 12、样品/培养基容器; 14、废液收集器; 16、空气过滤器; 18、排液管道连接器; 20、锥形管;
具体实施例方式本发明技术方案不局限于以下所列举的具体实施方式
,还包括各具体实施方式
间 的任意组合。
具体实施方式
一、本发明提供的对无菌制剂进行无菌性检查的方法按照以下步骤 进行一、实验材料1、药品与试剂复方茵陈注射液(规格50mL/瓶,批号20100120),包括正常样品 (Norm-sterilized Samples, Norm-SS)、未灭菌样品(Non-sterilized Samples, Non-SS)、 灭菌不彻底样品(Sub-sterilized Samples, Sub-SS) (100°C流通蒸汽灭菌IOmin)均由解 放军第302医院药学部提供。2、仪器与材料 3114型TAM air等温微量量热仪(Isothermal microcalorimeter) (ΤΑ Instrument, US), TAM Assistant 工作立占,检测限为 4 μ W,24h 基 线漂移小于士20 μ W,检测量程为士600mW,工作温度为5 90°C。SW-CT-2FD双人单面净 化台(苏州净化设备厂);NS01-2型全封闭无菌试验过滤培养器(北京牛牛基因技术有限 公司,批号20090910) ;TH2-22台式恒温振荡器(江苏太仓市实验设备厂);HTY-III型智 能集菌仪(杭州泰林医疗器械有限公司);303AB-6型隔水培养箱(上海树立仪器仪表公 司),0. 45 μ m醋酸纤维素酯微孔滤膜(北京化学厂),0. 9%无菌氯化钠溶液(石家庄四药 集团)。3、菌种与培养基金黄色葡萄球菌[Staphylococcus aureus (S. aureus), CMCC (B) 26003],大肠埃希菌[Escheichia coli (E. coli),CMCC (B) 44102],铜绿假单 Ifi 胃[Pseudomonas aeruginosa(P. aeruginosa), CMCC (B)10104], ;^ 贞氏 _ 双木干胃 [Shigelladysenteriae, (S. dysenteriae), CMCC (B) 51252],枯草芽孢杆菌[Bacillus subtilis(B. subtilis), CMCC(B)63501],生孢梭菌[Clostridium sporogenes (C.sporogenes), CMCC(B)64941],白色念珠菌[Candida albicans(C. albicans), CMCC(F)98001],黑曲霉[Aspergillus niger (A. niger), CMCC(F)98003],均由中国药品 生物制品检定所提供;硫乙醇酸盐流体培养基[Thioglycollate medium(TM),(简称“硫 乙”),批号 091020],改良马丁培养基[Modified martinmedium(MMM),(简称“马丁”), 批号 090915],营养肉汤培养基(NutrientBroth Medium,批号 090922),琼脂粉(Powered Agar,批号 091022),玫瑰红钠培养基(Sodium Rose Bengal Medium,批号 090912),蛋白胨 (P印tone,批号090708),均购于中国药品生物制品检定所。二、菌液制备接种金黄色葡萄球菌、大肠埃希菌、铜绿假单胞菌、志贺氏痢疾杆菌、枯草芽孢杆 菌的新鲜培养物至营养肉汤中,接种生孢梭菌的新鲜培养物至硫乙醇酸盐培养基中,30 35°C培养18 24h ;接种白色念珠菌的新鲜培养物至改良马丁琼脂培养基中,23 28°C 培养24 48h,上述培养物用0. 9%灭菌氯化钠溶液进行10倍系列稀释,制成含菌数小于 IOOcfu · mr1的菌悬液;接种黑曲霉的新鲜培养物至改良马丁琼脂培养基斜面中,23 28°C培养5 7 天,加入3 5mL 0.9%无菌氯化钠溶液,将孢子洗脱。洗脱液用0. 9%无菌氯化钠溶液液 行10倍系列稀释制成含孢子数小于IOOcfu · mL-1的孢子悬液。取新鲜金黄色葡萄球菌培养物5mL,分别置于_70°C冰箱和60°C水浴中保持2h,加 入0. 9%灭菌氯化钠溶液行10倍系列稀释。上述各微生物不同浓度稀释液作为无菌检查的阳性控制物。三、获取受试菌种的指纹特征热谱曲线取各菌种IO-3UO-5UO-7UO-8UO-9UO-iqUO-11的稀释培养物各lmL,分别注入微量 量热仪安瓿中,然后分别导入9mL相应无菌培养基,作为检测阳性通道;另取一只安瓿直接 导入对应无菌培养基,作为空白对照通道。其中,金黄色葡萄球菌、大肠埃希菌、铜绿假单孢菌、枯草芽孢杆菌、生孢梭菌、痢 疾杆菌的稀释培养物中加入硫乙醇酸盐流体培养基,置35°C微量量热仪中,记录各菌株生 长热谱曲线(heat flow);白色念珠菌及黑曲霉的稀释培养物中加入改良马丁培养基,置 28°C微量量热仪中,记录各菌株生长热谱曲线,如图1至图8所示。取金黄色葡萄球菌新鲜培养物、-70°C保藏培养物与60°C保藏培养物10_5、10_7的 稀释培养物各ImL注入微量量热仪安瓿中,然后分别导入9mL无菌硫乙醇酸盐流体培养基, 作为不同状态微生物检查通道;另取两只安瓿分别导入无菌硫乙醇酸盐流体培养基和无菌 生理盐水各10mL,作为空白对照通道,各安瓿置35°C微量热仪中,记录各菌株生长热谱曲 线,如图9所示。四、提取热谱曲线的热动力学参数,确定菌种阳性判定指标提取各曲线热动力学参数随时间变化的检测通道热功率Pi及与其同时刻的空 白对照通道热功率Po、最大发热功率Pmax、达到最大发热功率时间Tmax、总发热量Htotal ;提 取各曲线指数生长段每15min斜率k值,记录k彡0的出现时间(Time of exponential growth, Te) ο各菌种不同浓度情况下提取到的参数如下其中,Dilution稀释度;
cfu :colony forming unit,菌落形成单位;Te:k≥0出现时间;k:热谱曲线每15min段斜率;Td:微生物检出时间;Pi 不同稀释度菌液生长发热功率;P0 与Pi同时刻的无菌培养基热功率;P_ 最大发热功率;T_ 达到最大发热功率时间;Ht。tal 总发热量。表1A不同浓度金黄色葡萄球菌生长的热动力学参数 表IC 不同浓度铜绿假单胞菌生长的热动力学参数
表1D不同浓度枯草芽孢杆菌生长的热动力学参数 表1E不同浓度生孢梭菌生长的热动力学参数
表1F不同浓度痢疾杆菌生长的热动力学参数 表1G不同浓度黑曲霉生长的热动力学参数 表1H不同浓度白色念珠菌生长的热动力学参数 金黄色葡萄球菌不同生存状态下提取参数如下表2不同状态金黄色葡萄球菌生长的热动力学参数 通过对大量数据的分析和整理,给出本发明方法判断微生物污染的判定指标 为,以k > 0为检出受试菌种的必要条件,并规定检查通道热功率Pi值与同时刻空白通 道热功率Ptl差值大于Ptl绝对值3倍的时间为检出受试菌种阳性的检出时间点(Time of Detection,Td),S卩Td = Time [ (Pi-Ptl) / | P。|彡3]。按照这个判定指标对以上实验数据进行 分析,结果表明(1)各菌种生长热谱曲线具有明显的指纹特征性,可用于不同菌种的特征鉴别; 其中最大发热功率(Pmax)、总发热量(Htotal)以及曲线峰形结构最能够代表各菌种间特征差 异,并具有稳定性。(2)随稀释度降低,各菌种热谱曲线峰形基本不变,达到最大发热功率时间(Tmax) 均勻推迟,指数生长期(Te)推迟;随菌种浓度(Dilution)降低,大肠杆菌及痢疾杆菌的最大发热功率降低;随稀释度降低,各菌种检出时间(Td)逐渐推迟,并呈良好的线性关系;(3)除白色念珠菌检出时间较长外(大于36h),其它各菌种基本于18h内检出,且 检出时间与菌液浓度呈明显的线性关系;提示微量量热法对于各种微生物的检出具有较好 的普适性和快速性;同时提示白色念珠菌为生长缓慢微生物,而其它微生物在该条件下生 长迅速,能够快速检出。(4)不同状态金黄色葡萄球菌检出时间为新鲜培养物(< 18h) <冷冻保藏培养 物(< 24h) <高温保藏培养物(> 36h);结果提示在该检测条件下不同状态微生物复苏 时间随其受损伤的程度而延长,本发明方法可以灵敏地检出不同状态下生长的微生物。(5)活菌计数结果表明本发明方法能够检出低于Icuf的各种微生物,方法灵敏 度高;其中,可以检出金黄色葡萄球菌、铜绿假单胞菌、黑曲霉等微生物低于10—11的稀释培 养物。以上步骤完成后,就获得了各个菌种的指纹特征热谱曲线和相关的热动力学参 数,并建立起菌种阳性判定指标,这些图谱及数据公式既是本发明的技术分析资料,也可以 作为以后检测工作的标准来使用。也就是说,以上建立标准的操作只需要进行一次,标准建 立后,以后的每次检测只需重复本发明步骤(5)的操作,并与标准进行比对即可。例如,待测制剂为复方茵陈注射液,对其进行无菌检查时,只需将样品进行过滤、 培养,在微量量热仪中录制样品的热谱曲线。将样品的热谱曲线与步骤(4)获得的菌种阳 性判定指标进行比较,当样品热谱曲线中出现符合菌种阳性判定指标的表征时,可判定样 品中有微生物污染,然后根据步骤(3)获得的菌种指纹特征热谱曲线,可判断样品中污染 菌种的类型。五、受试制剂的无菌性检查为了检验本发明方法的可靠性和灵敏度,以下检查程序中除选取复方茵陈注射液 的正常灭菌样品作为受试样品外,还选取复方茵陈注射液的未灭菌样品、灭菌不彻底样品、 正常灭菌样品+小于IOOcfu的金黄色葡萄球菌、正常灭菌样品+小于IOOcfu的白色念珠 菌作为受试样品的对照物,采集其数据并进行数据分析。具体操作方法如下取复方茵陈注射液未灭菌样品、灭菌不彻底样品和正常灭菌样品各200mL,薄膜过 滤,滤膜用0. 蛋白胨水溶液冲洗三次,每次IOOmL,排净冲洗液,在安瓿中注入IOmL硫乙醇酸盐流体培养基;另取上述样品,照前法操作,排净冲洗液后导入IOmL改良马丁培养基。另取正常灭菌样品两份各200mL,照前法操作,排净冲洗液后在两个安瓿中分别导 入IOmL硫乙醇酸盐流体培养基和IOmL改良马丁培养基;并在硫乙醇酸盐流体培养基中加 入小于IOOcfu的金黄色葡萄球菌,在改良马丁培养基中加入小于IOOcfu的白色念珠菌稀 释培养物,作为阳性对照。各安瓿分别置相应微量量热仪通道,记录热谱曲线。录制好的热谱曲线如图10所
7J\ ο各曲线中提取到的数据如下表所列,其中k 热谱曲线每15min段斜率;Te:k彡0出现时间;Td:微生物检出时间;Pfflax 最大发热功率;Tmax 达到最大发热功率时间;Ht。tal 总发热量。表3.本发明方法对复方茵陈注射液进行无菌检查的参数提取与结果判定 数据分析如下(1)热谱曲线显示正常样品通道(正常样品+硫乙醇酸盐流体培养基,正常样品+ 改良马丁培养基)热谱曲线呈平缓下降趋势,热动力学参数显示正常样品k值呈持续负值 状态,表明正常样品无微生物污染且培养基无菌性良好;(2)热谱曲线显示阳性对照通道(金黄色葡萄球菌+硫乙醇酸盐流体培养基,白色 念珠菌+改良马丁培养基)微生物生长良好,表明该条件适合复方茵陈注射液无菌检查,具 有较好的灵敏性;(3)未灭菌样品及灭菌不彻底样品中微生物污染均在10. 5h内检出,热动力学参 数显示未灭菌样品Pmax高于灭菌不彻底样品,提示其污染程度较高,也表明该无菌检查方法 对样品污染程度差异的敏感性。
21
以上是使用本发明方法进行无菌检测的步骤及获得的实验数据。为了将本发明与 现有技术进行比对,以下提供与上述方法同样的实验条件下使用集菌观察法进行无菌检查 的数据,并与本发明实验数据进行比较1、不同菌种不同浓度下两种方法检出微生物所需时间比较如下表4A各类微生物所属种类与培养条件汇总表 表4B本发明方法的各细菌检出时间表 表4C集菌观察法的各细菌检出时间表 结果表明(1)除白色念珠菌外,其它各微生物使用集菌观察法检出时间虽然小 于36h,但平均检出时间较微量量热法长(微量量热法集中分布在0 18小时,集菌观察法 集中分布在10 36小时);(2)集菌观察法检出最低稀释度为10,,未检出各微生物10_" 稀释度;同时各微生物检出最低浓度均较微量量热法高,检出灵敏度较微量量热法低;(3) 白色念珠菌在检查过程中不引起培养基的明显浑浊,集菌观察法难以准确判断是否有微生 物生长;(4)使用集菌观察法低温(-70°C )及高温(60°C )保藏金黄色葡萄球菌各稀释度 培养物检出时间较微量量热法长,且未检出60°C时10_8稀释培养物;(5)所选微生物菌种囊 括好氧菌/厌氧菌/兼性菌、革兰氏阳性菌/革兰氏阴性菌、芽孢杆菌/酵母菌/真菌等自 然界常见微生物类型(也为常见微生物污染源),微量量热法均能检出以上微生物,表明方 法具有良好的普适性,符合无菌检查需要。2、以复方茵陈注射液为样品的无菌性检查,两种方法检查结果的比较如下本发明方法的判定结果如表3所示。集菌观察法的判定结果如下表所示表5.集菌观察法对复方茵陈注射液进行无菌检查的判定结果 表中“_” 未检出微生物污染;“士” 不可准确判定;“ + ” 检出微生物污染.两种方法准确检出微生物污染所需时间总结对比如下表6本发明方法和集菌观察法检出复方茵陈注射液微生物污染所需时间对比表 结果表明本发明方法比集菌观察法更快速、灵敏。对于生长不明显引起培养基浑 浊的微生物污染(白色念珠菌、枯草芽胞杆菌等)其检查灵敏性相对更高。本发明方法和现有技术集菌观察法全面比较总结如下表表7微量量热法和集菌观察法检测数据比较 以上比较内容提示米用本发明微量量热法进行无菌检查比常规集菌观察法更加 快速、灵敏,且有较高的自动化程度和客观性,可以作为无菌检查的新方法。
具体实施方式
二 本实施方式的步骤(1)至步骤(4)与具体实施方式
一相同。在步骤(5)对样品进行过滤和注入培养基的操作过程中,为了隔绝外界环境(避 免因二次污染而做出假阳性判断)、满足富集微生物同时消除产品抑菌性能的要求,本实施方式采用一种全封闭集菌安瓿培养器,其结构及使用方法如下如图12所示,全封闭集菌安瓿培养器由集菌安瓿系统、加样加液系统和蠕动排液 系统组成,所述加样加液系统与集菌安瓿系统之间通过进液管4连接在一起,集菌安瓿系 统和蠕动排液系统通过排液管5连接在一起。优选结构为,集菌安瓿系统包括安瓿瓶身1,在安瓿瓶身的瓶口上密封固定橡胶密 封塞3。进液管4、排液管5和排气管6穿透橡胶密封塞后伸入安瓿瓶身内。安瓿瓶身内置 一滤器2,滤器的底部铺有滤膜15,滤器的顶部与安瓿瓶内的进液管口连接,安瓿瓶内的排 液管口越过滤器伸至安瓿瓶底部。滤膜可根据过滤对象的不同预先设置为不同的材质。在 安瓿瓶身外部的进液管和排液管上分别安装有进液控制阀7、排液控制阀8和排气控制阀 17,排气管顶部连接空气过滤器16。优选结构为,加样加液系统包括样品/培养基容器12和带空气过滤器的进液装置 10。优选结构为,蠕动排液系统包括一蠕动泵13,蠕动泵的出口连接废液收集器14。优选结构为,在进液控制阀和加样加液系统之间的进液管上安装一进液管道连接 器11,断开该管道连接器时,可将加样加液系统与集菌安瓿系统分离;在排液控制阀和蠕 动排液系统之间的排液管上安装一排液管道连接器18,断开该管道连接器时,可将蠕动排 液系统与集菌安瓿系统分离。进液管道连接器和排液管道连接器为塞口式,进液管道连接器和排液管道连接器 的塞口可对接形成密封管道连接器19。在集菌安瓿培养器中完成过滤和培养基的注入程序后,从进液管道连接器11塞 口处将加样加液系统与集菌安瓿系统分离;从排液管道连接器18塞口处将蠕动排液系统 与集菌安瓿系统分离;然后将进液管道连接器塞口和排液管道连接器塞口对接形成密封管 道连接器19,使集菌培养容器处于密封状态,如图13所示。优选结构为,在安瓿瓶身上标有刻度线9。可根据需要决定标示精度,如可以标示 5mL、10mL、15mL 等刻度线。优选结构为,安瓿瓶身为玻璃结构或硬质塑料结构,透明材料可以保证外部观察 的准确性。优选结构为,进液控制阀、排液控制阀和排气控制阀为卡口阀。优选结构为,进液管、排液管和排气管为硅胶软管。优选结构为,排气管为由硅胶软管连接的顶端带空气过滤装置、尾端中空侧壁开 口的不锈钢针头。另外,本发明还提供一种进液管的变形结构。如图14和图15所示,进液管伸入安瓿瓶身的部分可以是上细下粗的锥形管20,滤 器固定在锥形管的下端。所述锥形管的上端外表面为螺纹结构21,橡胶密封塞的下表面固 定一内螺纹接口 22,锥形管可通过螺纹结构21与该内螺纹接口连接。上述全封闭集菌安瓿培养器的使用方法为①、将加样加液系统、集菌安瓿系统、蠕动排液系统顺次连接在一起,也就是将进 液装置10连接在样品/培养基容器12上,将进液管道连接器11的塞口对接好,样品/培 养基容器12内是待检样品;再将排液管道连接器18的塞口也对接好;
②、关闭排气控制阀17,打开进液控制阀7、排液控制阀8、蠕动泵13,调整流速,缓 慢过滤样品并排除药液;上述步骤完成后,打开排气通道控制阀17,关闭蠕动泵13、进液控 制阀7、排液控制阀8;③、替换样品/培养基容器为无菌清洗液容器,关闭排气通道控制阀17,打开进液 控制阀7、排液控制阀8、蠕动泵13,调整流速,清洗滤膜并排除废液;④、关闭蠕动泵13、排液控制阀8、进液控制阀7,打开排气控制阀17,替换样品/ 培养基容器12内样品为对应培养基;⑤、关闭排气控制阀17,打开排液控制阀8、蠕动泵13,使瓶内呈负压状态;并抽破 滤膜15,使滤器2与瓶内联通;⑥、关闭排液控制阀8、蠕动泵13,打开进液控制阀7,使培养基加至相应刻度,关 闭进液控制阀7 ;⑦、如果培养过程中需要一定比例的空气促使微生物快速生长,就打开排气控制 阀17向集菌安瓿培养器内按比例注入空气,然后拔出排气通道6 ;如果培养过程不需要空 气,就完成步骤⑥后直接拔出排气通道6 ;⑧、打开进液管道连接器11和排液管道连接器18的塞口,并将这两个管道连接器 的塞口组合对接在一起,形成密封管道连接器19,使集菌安瓿培养器处于密封状态;⑨、将密封状态的集菌安瓿培养器置于相应的检测仪器/环境中,获取样品的检 测结果。具体到使用全封闭集菌安瓿对受试制剂复方茵陈注射液进行无菌检查的方法 为①、将进液装置10连接在样品/培养基容器12上,将进液管道连接器11的塞口 对接好,样品/培养基容器12内是待检的复方茵陈注射液样品;然后将排液管道连接器18 的塞口也对接好;②、关闭排气控制阀17,打开进液控制阀7、排液控制阀8、蠕动泵13,调整流速,缓 慢过滤复方茵陈注射液样品并排除药液;上述步骤完成后,打开排气通道控制阀17,关闭 蠕动泵13、进液控制阀7、排液控制阀8 ;③、替换复方茵陈注射液容器为无菌清洗液容器,关闭排气通道控制阀17,打开进 液控制阀7、排液控制阀8、蠕动泵13,调整流速,清洗滤膜并排除废液;④、关闭蠕动泵13、排液控制阀8、进液控制阀7,打开排气控制阀17,替换样品/ 培养基容器12内注射液样品为硫乙醇酸盐流体培养基或改良马丁培养基;⑤、关闭排气控制阀17,打开排液控制阀8、蠕动泵13,使瓶内呈负压状态;并抽破 滤膜15,使滤器2与瓶内联通;⑥、关闭排液控制阀8、蠕动泵13,打开进液控制阀7,使培养基加至相应刻度,关 闭进液控制阀7 ;⑦、打开排气控制阀17向集菌安瓿培养器内注入空气,然后拔出排气通道6 ;⑧、打开进液管道连接器11和排液管道连接器18的塞口,并将这两个管道连接器 的塞口组合对接在一起,形成密封管道连接器19,使集菌安瓿培养器处于密封状态;⑨将密封状态的集菌安瓿培养器置于微量量热仪中,获取复方茵陈注射液样品的 热谱曲线。
上述技术方案仅体现了本发明技术方案的优选技术方案,本技术领域的技术人员 对其中某些部分所可能做出的一些变动均体现了本发明的原理,属于本发明的保护范围之 内。
权利要求
一种无菌检查方法,其特征在于,该方法包括以下步骤(1)选取菌种和培养基选取不同种类的菌种及适合菌种生长的无菌培养基;(2)制备菌液将步骤(1)选取的菌种在无菌培养基中进行培养,获得各个菌种不同浓度、不同生存状态的菌液,作为录制菌种的指纹特征热谱曲线的阳性控制物;(3)录制各个菌种的指纹特征热谱曲线作为鉴别特征将步骤(2)获得的菌液置于微量量热仪中,记录各个菌种不同浓度、不同生存状态的菌液的热谱曲线,获得不同菌种的指纹特征热谱曲线;(4)提取步骤(3)所获热谱曲线的热动力学参数,确定菌种阳性判定指标;(5)对待测样品进行无菌检查将待测样品进行过滤,用无菌清洗液冲洗滤膜上的过滤物;将样品的过滤物和培养基混合后置入微量量热仪的检测通道,记录其热谱曲线;通过与步骤(3)的不同菌种的指纹特征热谱曲线以及步骤(4)的菌种阳性判定指标进行比对,检查待测制剂是否被微生物污染。
2.根据权利要求1所述的无菌检查方法,其特征在于,步骤(2)中,获得各个菌种不同 浓度菌液的方法是,将菌种新鲜培养物洗脱得到洗脱液,用0. 9%灭菌氯化钠溶液将洗脱液 按10倍系列稀释;获得各个菌种不同生存状态的菌液的方法是,将培养物过滤洗脱得到洗 脱液,将洗脱液分别置于_70°C冰箱和60°C水浴中保持2h后,再用0. 9%灭菌氯化钠溶液按 10倍系列稀释。
3.根据权利要求2所述的无菌检查方法,其特征在于,步骤(3)中将菌液置于微量量热 仪中的具体步骤是(3-1)按步骤(2)的方法取各菌种10_3、10_5、10_7、10_8、IO-9UO-iciUO-11倍系列浓度的稀 释培养物;(3-2)将等体积的各菌种的系列浓度稀释培养物加入步骤(1)中所述的无菌培养基 中,作为微量量热仪的阳性检测通道;(3-3)另取一份无菌培养基,作为微量量热仪的空白对照通道。
4.根据权利要求1所述的无菌检查方法,其特征在于,步骤(4)所述热谱曲线的热动 力学参数包括,随时间变化的检测通道热功率Pi及与其同时刻的空白对照通道热功率K、 最大发热功率Pmax、达到最大发热功率时间Tmax、总发热量Htoal,以及各曲线指数生长段每 15min 斜率 k。
5.根据权利要求4所述的无菌检查方法,其特征在于,步骤(4)所述菌种阳性判定指标 可以是记录k≥0的出现时间,并以k≥0为检出样品微生物污染的必要条件,同时建立 微生物生长的阳性判断时间指标。
6.根据权利要求5所述的无菌检查方法,其特征在于,微生物生长的阳性判断时间指 标可以按以下方法确定检测通道热功率?1与同时刻空白通道热功率Ptl之间的差值大于Ptl 绝对值3倍的时间为检出样品微生物污染的时间点(Td),即Td = Time[(Pi-Ptl)/IP0 ≥ 3]
7.根据权利要求1所述的无菌检查方法,其特征在于,步骤(5)中将样品过滤物和培养 基进行混合时,按照适合菌种生长的条件选择培养基。
8.根据权利要求1所述的无菌检查方法,其特征在于,步骤(5)中将样品过滤物和培养 基混合并置入微量量热仪的安瓿中时,安瓿中按照体积比例保留促使菌种快速生长的气体环境。
9.根据权利要求1所述的无菌检查方法,其特征在于,步骤(5)将安瓿放入微量量热仪 的检测通道时,检测通道的温度按照适合菌种生长的温度设定。
10.根据权利要求9所述的无菌检查方法,其特征在于,步骤(5)将安瓿放入微量量热 仪的检测通道时,检测通道的温度可以设定为23°C 37°C。
11.一种实施权利要求1所述方法时使用的全封闭集菌安瓿培养器,其特征在于,所述 集菌安瓿培养器由集菌安瓿系统、加样加液系统和蠕动排液系统组成,所述加样加液系统 与集菌安瓿系统之间通过进液管(4)连接在一起,集菌安瓿系统和蠕动排液系统通过排液 管(5)连接在一起。
12.根据权利要求11所述的全封闭集菌安瓿培养器,其特征在于,其中集菌安瓿系统 包括安瓿瓶身(1),在安瓿瓶身的瓶口上密封固定橡胶密封塞(3),进液管(4)、排液管(5) 和排气管(6)穿透橡胶密封塞后伸入安瓿瓶身内,安瓿瓶身内置一滤器(2),滤器的底部铺 有滤膜(15),滤器的顶部与安瓿瓶内的进液管口连接,安瓿瓶内的排液管口越过滤器伸至 安瓿瓶底部,在安瓿瓶身外部的进液管、排液管和排气管上分别安装有进液控制阀(7)、排 液控制阀(8)和排气控制阀(17),排气管顶部连接空气过滤器(16)。
13.根据权利要求11所述的全封闭集菌安瓿培养器,其特征在于,加样加液系统包括 样品/培养基容器(12)和带空气过滤器(16)的进液装置(10)。
14.根据权利要求11所述的全封闭集菌安瓿培养器,其特征在于,蠕动排液系统包括 一蠕动泵(13),蠕动泵的出口连接废液收集器(14)。
15.根据权利要求12所述的全封闭集菌安瓿培养器,其特征在于,在进液控制阀和加 样加液系统之间的进液管上安装一进液管道连接器(11),断开该管道连接器时,可将加样 加液系统与集菌安瓿系统分离;在排液控制阀和蠕动排液系统之间的排液管上安装一排液 管道连接器(18),断开该管道连接器时,可将蠕动排液系统与集菌安瓿系统分离。
16.根据权利要求15所述的全封闭集菌安瓿培养器,其特征在于,进液管道连接器 (11)和排液管道连接器(18)为塞口式,进液管道连接器管和排液管管道连接器的塞口可 对接形成密封管道连接器(19)。
17.根据权利要求12所述的全封闭集菌安瓿培养器,其特征在于,安瓿瓶身为玻璃结 构或透明硬质塑料结构,在安瓿瓶身上标有刻度线(9)。
18.根据权利要求12所述的全封闭集菌安瓿培养器,其特征在于,进液管、排液管和排 气管为硅胶软管,进液控制阀、排液控制阀和排气控制阀为卡口阀。
19.根据权利要求12所述的全封闭集菌安瓿培养器,其特征在于,排气管为由硅胶软 管连接的顶端带空气过滤装置的不锈钢针头。
20.根据权利要求12所述的全封闭集菌安瓿培养器,其特征在于,进液管伸入安瓿瓶 身的部分为上细下粗的锥形管(20),滤器(2)固定在锥形管的下端。
21.根据权利要求20所述的全封闭集菌安瓿培养器,其特征在于,所述锥形管的上端 外表面为螺纹结构(21),橡胶密封塞的下表面进液管口处固定一内螺纹接口(22),锥形管 可通过螺纹结构与该内螺纹接口连接。
全文摘要
本发明公开了一种无菌检查方法,该方法包括选取菌种、培养基、制备菌液、录制各个菌种的指纹特征热谱曲线作为鉴别特征、提取热谱曲线的热动力学参数并确定菌种阳性判定指标以及对待测样品进行无菌检查等步骤。本发明还公开了一种实施该方法时使用的全封闭集菌安瓿培养器,该集菌安瓿培养器由集菌安瓿系统、加样加液系统和蠕动排液系统组成,所述加样加液系统与集菌安瓿系统之间通过进液管连接在一起,集菌安瓿系统和蠕动排液系统通过排液管连接在一起。本发明检出微生物污染的时间短,灵敏度高,自动化程度高,检测结果准确,能提供检测全过程微生物生长状态曲线,该曲线具有较好指纹性,可定性分析微生物污染状况。
文档编号G01N25/20GK101893589SQ201010211629
公开日2010年11月24日 申请日期2010年6月29日 优先权日2010年6月29日
发明者任永申, 张萍, 肖小河, 鄢丹, 金城 申请人:中国人民解放军第三○二医院