专利名称:一种高阻抗宽频带高电压分压器的电极结构的制作方法
技术领域:
本发明涉及电力系统电力器件领域,具体涉及一种高阻抗宽频带高电压分压器的
电极结构。
背景技术:
1、问题的提出 电力行业中常常需要测量上万伏特的高电压。阻容分压器是一种用于高电压测量 的仪器,能够将高电压按照固定比例縮小,以进行测量。其原理如图1所示,其中其中^为 被测高压,^为分压器输出的低压信号,高压臂电阻I^远远大于低压臂电阻R2。由于被测 电压很高,分压器的高压臂电阻和电容不但需要考虑绝缘、散热和防止电晕等一系列问题, 而且需要考虑对被测电路产生的影响,因而往往需要采用很大的高压臂电阻(例如2MQ) 和很小的高压臂电容(例如2pF),以减小对被测电路的影响、减小分压器的功率。通常高压 臂电容由空间杂散电容来代替。 为了尽量提高分压器的局部放电电压、电晕电压和击穿电压,确保使用安全,高压 电极和低压电极之间必须具有足够的绝缘距离。因此,高压臂电阻需要具备足够大的尺寸。 在这种高压臂电阻不但阻值大而且尺寸大的情况下,电极与高压电阻本体之间的空间杂散 电容的影响很大,尤其是严重限制了分压器的高频测量频带。图2给出了低压电极(接地 电极,或者是大地)与高压电阻之间存在空间杂散电容的示意情况,其中仏为被测高压,U2 为分压器输出的低压信号。空间杂散电容本身是分布参数,为了便于分析,由集中参数电容 Q来表示。根据图2, &与Q组成了低通滤波器,使得分压器对高频信号的输出偏小。
为了满足分压器从直流到高频成份的宽频带范围内的准确测量,要求分压器具有 足够高的高频截至频率。根据图2所示原理来分析,要保证分压器具有足够高的高频截至 频率,&与d的乘积应尽量小。然而,实际应用中空间杂散电容Q难以减。蛭哐贡郾 须拥有足够大的尺寸以保证足够的绝缘距离;而如果高压臂电阻过。虿坏嵊跋毂徊 电路,而且功耗太大散热困难。因此,Ri与Q的乘积偏大是限制高压分压器的测量频带的 关键因素。 2、现有解决方案分析
1)传统解决方案 为了在保持分压器输入阻抗很高的同时,提高分压器的测量频带,现有的通常做 法是改变分压器的电极结构,用高压电极与高压臂电阻之间的杂散电容来平衡低压电极与 高压臂电阻之间的杂散电容。常见的电极形状如图3所示,有伞形、工字形、哑铃型等等。图 4示意了电极形状改善分压器高频性能的原理。在图4中,仏为被测高压,仏为分压器输出 的低压信号,Cu代表高压电极与高压臂电阻之间的杂散电容,C12代表低压电极与高压臂电 阻之间的杂散电容。当Cn与(:12相等时,电容电流全部流经杂散电容,而高压臂电阻中只存 在阻性电流,就不存在图2中所示的"低通滤波",因此分压器的高频性能得以提高。
但是,由于空间杂散电容和高压臂电阻均是分布参数,图4所示只是理想状态,实际中难以达到。按照分布参数设计等效电路,如图5所示,其中^为被测高压,仏为分压器输 出的低压信号,高压臂电阻R被等分成n份,每份均与高压电极之间存在杂散电容C『与低 压电极之间存在杂散电容C^r为低压臂电阻,c为低压臂电容。利用图5所示分布参数电 路,仿真计算分压器拥有图3所示的电极结构下的幅频特性,则发现当电极的直径较小时, 无论如何调整电容c、Cu和C2i的数值,分压器的输出电压幅值总是与频率相关,难以获得 不受频率影响的输出结果;只有当电极直径大于高压臂电阻长度的2倍时,伞形结构和工 字形结构的分压器才会显出比较理想的幅频特性,而此时分压器的横向尺寸变得很大。图6 显示了一种伞形结构下的分压器幅频特性,其中高压臂电阻为2MQ,低压臂电阻为333Q, 低压臂电容为100pF。可见,传统解决方案在电极尺寸有限的情况下也难以解决问题。
2)新型分压器结构 除了上述传统方式之外,还有一些比较新颖的电极结构。参考文献1 , 2提出了 一种如图7所示的形式,其中高压电极带有伞形屏蔽罩,低压电极为圆筒,研究了高压电极 屏蔽罩的直径、深度、角度等参数对分压器性能的影响,并做了优化设计。但是根据参考文 献1中给出的电压沿高压臂电阻的分布曲线,如图7所示,可以看到电压分布曲线接近理 想状态下的直线分布,但是仍有弯曲,说明分压器的输出仍受电压频率的影响。该高压探头 的部分响应时间为19ns,但是高压臂电阻只有10kQ。按照这种结构,若高压臂电阻达到 2MQ ,则其响应时间将远远大于19ns。 参考文献3,4提出了一种具有套筒电极的分压器结构,如图8(a)所示。该分
压器用套筒电极来收集原来的高压臂对地电极杂散电容电流,并将此电流补偿到低压臂中 去,从而减小了杂散电容的影响。该分压器通过调节套筒电极的长度来达到电容电流的最 佳补偿,如图8(b)所示3。但是该结构仍然无法从根本上解决杂散电容影响,因为杂散电 容是分布参数,难以做到完全补偿,从而出现图8(b)中曲线要么过冲,要么上升沿缓慢的 情况。根据参考文献3所述,该分压器经优化设计后,响应时间达到了 0.8ns,但是其高压 臂电阻只有5k Q ,而且低压臂有20nH的电感,使得阶跃响应有振荡。按照这种结构,如果高 压臂电阻达到2MQ ,则该分压器的响应时间远大于0. 8ns。实际上,申请人按照该结构仿真 计算过高压臂电阻为2MQ时的情形,也选用两级分压,总分压器为10000 : 1。当套筒电极 的长度为高压臂电阻长度的一半时,效果最好。图9给出了此时一级分压低压臂不同电容 数值下的分压器阶跃响应波形,最好的响应时间仅达到470ns。 参考文献5,6提出了一种传输线形式的分压器,并且利用硫酸铜溶液作为高压
臂电阻。该分压器的结构如图io所示,由两级分压组成,特别是第一级按照传输线模型设
计。为了使第一级阻抗匹配,要求第一级高压臂电阻值下限为lk,上限为2kQ6。该分 压器经过优化设计后阶跃响应上升时间达到1. 843ns6。但是,由于分压器的响应时间与 高压臂电阻&和高压臂电阻对低压电极的杂散电容Q之间的乘积I^XQ成反比关系,如果 高压臂电阻达到2MQ时,其响应时间将远大于1. 843ns。
参考文献1赵中原,邱毓昌,王建生,于永明,高压换流阀组件冲击电压测量用高压探头, 高电压技术,2002年10月,第28巻第10期,第1 2转15页。2方志,赵中原,邱毓昌,王建生,于永明,直流输电换流阀晶闸管电压分布的光 电测量系统,电力系统自动化,2003年7月,第27巻第14期,第69 71页。
3陈炜峰,蒋全兴, 一种电阻脉冲分压器的研制,高电压技术,2006年7月,第32巻第7期,第76-78页转119页。4陈炜峰,蒋全兴,电阻分压器性能与高压纳秒双指数脉冲的测量,东南大学学报(自然科学版),2006年5月,第36巻第3期,第374-379页。5邬昌峰,蒋全兴,何鹏,赵才军,新型脉冲分压器的分析与误差补偿,高压电器,2008年4月,第44巻第2期,第168-171页。6邬昌峰,蒋全兴,何鹏,电解液分压器的优化设计,高压电器,2008年6月,第44巻第3期,第232-235页。
发明内容
本发明提供了一种一种高阻抗宽频带高电压分压器的电极结构,即通过控制高压电极、低压电极与高压臂电阻之间的杂散电容的分布方式,使高压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低压端成线性递减式分布;而低压电极与高压臂电阻之间的空间杂散电容的值沿高压臂电阻从高压端到低压端呈线性递增式分布,从而使得分压器具有很高的输入阻抗的同时,具有很宽的测量频带;并且提出了一种具有三角圆筒形电极的阻容分压器结构的实现方式。 按照如图11所示的分布参数电路进行仿真计算。图11中被测高压为U。,分压器
输出电压为u,高压臂电阻R被等分成n份,每份均与高压电极之间存在杂散电容C『与低
压电极之间存在杂散电容&i,其中i = 1,2,3...n;r为低压臂电阻,c为低压臂电容。申
请人发现,当杂散电容Cu和C2i的数值分别显现出线性递减和递增时,即 Cu-C^ = C12_C13 = C13_C14 = Cln_C1(n+1) = C (1) C2「C22 — C22_C23 — C23_C24 — C2n_C2(n+1) — _C (2)Cln = C21 = 0 (3) 其中C为某一固定的电容数值,分压器的输出与频率无关。部分仿真计算结果如
图12和图13所示。在图12中,显示了外加电压为lOkV时高压臂电阻上的电压分布情况,
其中高压臂电阻为2MQ ;高压臂电阻对高压电极的总杂散电容l]G,为0. 7pF(该数值的大
小不影响图中曲线的形状);高压臂电阻对低压电极的总杂散电容1]C^为0. 7pF(与高压
电极的杂散电容相等);电压频率为lOOMHz。即使在如此高的频率下,高压臂电阻上的电压显现出理想的均匀分布,说明杂散电容Cu和(^上的电流完全相互补偿,没有流经高压臂电阻。 在图13中,显示了分压器低压臂输出电压幅值与电压频率之间的关系,其中高压臂电阻为2MQ ;高压臂电阻对高压电极的总杂散电容l;Cu为0. 7pF ;高压臂电阻对低压电
极的总杂散电容1;C2,为0. 7pF(与高压电极的杂散电容相等),外加电压为6kV。由图可知,
,=1
从直流到lOOMHz的范围内(本文只仿真到了 lOOMHz),分压器的输出电压幅值与频率无关。因此,根据仿真分析,只要杂散电容满足公式(1) (3),而无论具体高压臂电阻和总杂散电容的大。盅蛊鞯氖涑鼋氡徊獾缪沟钠德饰薰兀佣梢宰龅郊扔泻艽蟮氖淙胱杩梗
5又有很宽的测量频带。 本发明的技术方案是一种高阻抗宽频带高电压分压器的电极结构,所述电极结 构的设计使得高压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低 压端成线性递减式分布;而低压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从 高压端到低压端呈线性递增式分布,则分压器的输出电压幅值与被测电压频率无关,从而 使得分压器具有较高的输入阻抗的同时,具有较宽的测量频带。 其中,所述电极结构是由圆筒电极经倾斜切割而成三角圆筒形结构,使得所述高 压电极沿圆筒轴线的垂直方向切割所形成的截面圆弧的弧长沿圆筒轴线从高压端到低压 端成线性递减,所述低压电极沿圆筒轴线的垂直方向切割所形成的截面圆弧的弧长沿圆筒 轴线从高压端到低压端成线性递增 其中,所述分压器还包括绝缘支撑、低压臂盒、低压臂电阻电容、绝缘垫块和高压 引线柱。 其中电极圆筒的外直径为52mm,内直径为44mm ;高压臂电阻长度为50mm,直径为 9mm,高、低压电极之间的斜缝宽度大约为10mm。 其中,所述分压器输入阻抗至少为2MQ ,测量频带至少为25. 9腿z。
本发明的有益效果是 1.所设计的分压器能够同时拥有高阻抗和宽频带。例如2MQ的输入阻抗和 25. 9MHz 2.提出了改善杂散电容的新思路,使得传感器测量频带从理论上摆脱了杂散电容 的影响,为实际的分压器设计中电极的设计提供了新的理论指导。 3.按照本发明所涉及的理论所设计出来的分压器不但具有高阻抗和宽频带,而且 由于电极采用了三角圆筒式结构,使得分压器的直径大为减小。若采用传统的伞形或者工 字形电极结构,该分压器的直径需要增大一倍以上。
为了使本发明的内容被更清楚的理解,并便于具体实施方式
的描述,下面给出与
本发明相关的
如下 图1是阻容分压器等效电路图; 其中,^ :被测高压;U2 :分压器输出电压:高压臂电阻;R2 :低压臂电阻;Q :高 压臂电容《2:低压臂电容; 图2是空间杂散电容对电阻分压器的影响; 其中,^ :被测高压;U2 :分压器输出高压:高压臂电阻;R2 :低压臂电阻;Q :高
压臂电容《2:低压臂电容; 图3是常见分压器电极结构; (a)伞形;(b)工字形;(C)哑铃型; 1-高压电极,2-高压电阻臂,3-低压电阻臂,4-低压电极 图4示出了借助于电极结构改善分压器的高频性能; 其中,(a)杂散电容示意; (b)等效电路; 图5是分压器分布参数等效电路;
6
图6是伞形电极结构的分压器幅频特性仿真结果 图7是一种具有屏蔽罩的分压器;
其中,(a)分压器结构示意图; l-高压电极引线端,2-有机玻璃罩,3-屏蔽环,4-低压电极引线端,5-高压臂,
6-铝罩,7-低压臂,8-测量引出线 (b)高压电阻上的电压分布图; 图8示出了一种具有套筒电极的分压器; 其中,(a)分压器结构示意图; 1-高压臂电阻,2-绝缘套管,3-套筒电极,4-高压臂支架,5-低压臂电阻,6_第二高压臂电阻,7-第二低压臂电阻,8-分压输出极,9-外层屏蔽罩,10-高压输入极;
(b)不同套筒电极下的阶跃响应; 图9示出了高压臂电阻为2MQ时具有套筒电极的分压器的阶跃响应;
图10示出了一种传输线式分压器; l-高压电极,2-低压电极,3-旋转指数曲线屏蔽罩,4-CuS04溶液(R》,5-聚四氟乙烯,6-电阻圈1 (R2) , 7-电阻圈2 (R4) , 8-第2极屏蔽罩,9-第2极高压臂(R3) , 10-接50 Q同轴电缆,11-接高压快脉冲,1-硫酸铜溶液有效长度
图11示出了分压器分布参数等效电路图; 图12示出了本发明分压器的高压臂电阻上的电压分布仿真结果; 图13示出了本发明分压器的低压臂输出电压幅值与电压频率的关系仿真结果; 图14是本发明的一个实例的图; 1-高压电极;2-绝缘支撑;3-低压电极和低压臂盒;4-高压臂电阻;5_低压臂电阻电容;6-绝缘垫块;7-高压引线柱
图15是本发明实物的方波响应;
(a)全波波形;(b)上升沿;(c)下降沿。
具体实施例方式
下面是本发明的一个优选实施例,以下结合本附图对本发明实现的技术方案做进一步说明。 按照上述设计思想,设计了如图14所示的具有三角形圆柱电极结构的分压器。其中电极圆筒的外直径为52mm,内直径为44mm ;高压臂电阻长度为50mm,直径为9mm。高、低压电极之间的斜缝宽度大约为10mm。电极由金属圆筒做倾斜切割而成,使得高压电极沿圆筒轴线的垂直方向切割所形成的截面圆弧的弧长沿圆筒轴线从高压端到低压端成线性递减,低压电极沿圆筒轴线的垂直方向切割所形成的截面圆弧的弧长沿圆筒轴线从高压端到低压端成线性递增。由于电极与高压臂电阻之间的分布电容与电极的圆周有线性关系,因而高压电极与高压臂电阻之间的杂散电容沿电阻轴线显线性递增,低压电极与高压臂电阻之间的杂散电容沿电阻轴线显线性递减。图15显示了图14所示实物的方波响应,图中方波的平均边沿达到22. 5ns。由于测量中使用了光纤信号转换和传输系统,该系统的响应时间为18.ns,根据串连系统的响应时间合成规律计算公式(4),该分压器实物本身的响应时间达到了 13.5ns,所对应的高频截至频率达到25.9MHz。若考虑到高压方波源所产生的高
7压方波本身具有大约2ns的边沿,该分压器的频带还会更高。另外,本发明实物未采用低压 臂串联电感补偿,因此方波响应无振荡。而现有许多分压器施加了电感补偿,虽然能够提高 测量频带,但是也带来了振荡。
<formula>formula see original document page 8</formula>
因此,本发明所提出的设计方法效果良好,据此设计的实物拥有2MQ的输入阻抗
和25. 9MHz的测量频带,与现有国内高电压分压器相比同时拥有高阻抗和宽频带。 上面通过特别的实施例内容描述了本发明,但是本领域技术人员还可意识到变型
和可选的实施例的多种可能性,例如,通过组合和/或改变单个实施例的特征。因此,可以
理解的是这些变型和可选的实施例将被认为是包括在本发明中,本发明的范围仅仅被附上
的专利权利要求书及其同等物限制。
权利要求
一种高阻抗宽频带高电压分压器的电极结构,其特征在于所述电极结构的设计使得高压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低压端成线性递减式分布;而低压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低压端呈线性递增式分布,则分压器的输出电压幅值与被测电压频率无关,从而使得分压器具有较高的输入阻抗的同时,具有较宽的测量频带。
2. 如权利要求1所述分压器的电极结构,其特征在于所述电极结构是由圆筒电极经 倾斜切割而成三角圆筒形结构,使得所述高压电极沿圆筒轴线的垂直方向切割所形成的截 面圆弧的弧长沿圆筒轴线从高压端到低压端成线性递减,所述低压电极沿圆筒轴线的垂直 方向切割所形成的截面圆弧的弧长沿圆筒轴线从高压端到低压端成线性递增。
3. 如权利要求1或2所述分压器的电极结构,其特征在于所述分压器还包括绝缘支 撑、低压臂盒、低压臂电阻电容、绝缘垫块和高压引线柱。
4. 如权利要求1-3任一所述分压器电极结构,其特征在于其中电极圆筒的外直径为52mm,内直径为44mm ;高压臂电阻长度为50mm,直径为9mm,高、低压电极之间的斜缝宽度大 约为10mm。
5. 如权利要求1或2所述的电极结构,其特征在于所述分压器输入阻抗至少为2MQ, 测量频带至少为25. 9MHz。
全文摘要
本发明提出了一种高阻抗宽频带高电压分压器的电极结构,属于电力系统电力器件领域。本发明的电极结构使得高压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低压端成线性递减式分布;而低压电极与高压臂电阻之间的空间杂散电容值沿高压臂电阻从高压端到低压端呈线性递增式分布,则分压器的输出电压幅值与被测电压频率无关,从而使得分压器具有较高的输入阻抗的同时,具有较宽的测量频带。
文档编号G01R15/04GK101788583SQ20101003400
公开日2010年7月28日 申请日期2010年1月8日 优先权日2010年1月8日
发明者张春雨, 朱家骝, 李成榕, 查鲲鹏, 程养春 申请人:中国电力科学研究院;华北电力大学