רģѡgnssźŴװõ
漰λùƷװã漰ڵϵͳźŵ װЩװõӦڵͼزľ ֺ̡ͼ֣Լѧо
1.ȫϵͳ(GNSQȫλϵͳ(GPQ ()GL0NASS (˹) Galileo (ŷ)COMPASS (й)(ʹлеϵͳ)GNSSͨʹûƵ ǡγǵȺ(constellation)GNSSջǹ ĵźƵҲΪ㲥źƵ ҪĽջ汾бȽڶһϵеÿǵ뵽 ʱļ⣬GNSSջλλλڵıϵĶλ Sandra Verhagen The GNSS integer ambiguities !estimation and validation, Delft University of Technology, 2004, ISBN 90-804147-4-3 (ڴ˱Ϊ [1])½ 2. 1. 12. 1. 2 2. 1. 3 ṩ GPSGL0NASS (ialileo ĸ(Ҳ Publications on Geodesy 58, Delft, 2005, ISBN-13 :9789061322900,ISBN-10 :906132290 б)ʹGNSSźжλṩľȷȣҪͨʱ ܵʧ磬GPS1575. 45MHz (νLlƵ)Դֲ(C/A)Ĵ ڱӦõľ(P)룬ԹѿõȿC/A (αĵʱĵӼ)ĵӲȷԣֿ( ڵͶЧӦDZ(ӡhemeris error)ʱͶྶ ɵ)ʱʹGPS C/AĻĶλľȷȴԼ15һֶԻĶλǻزλжλڸ УǷGNSSźŵزλڴǷźƵķȣزλķṩߵöĶλȷȣ ߴľȷԭֱ۵¡Ll GPS C/AȵƸزһڳöˣ⣬ زλλýɱΪȻڻزλλõĹУزλδ֪ģ ([1]½1.1ĵڶн˽)ȷźŵλȷķʽֱȷνġ()(integer ambiguity problem)ȽǾ(integer ambiguity resolution problem) "λģȽǾ(phase ambiguity resolution problem)磬[1]½2. 2. 12. 2. 2зֱṩ۲ֵ(code observations)λ۲ֵ(phase observations)GNSS۲ʽ[1] ½3ṩ˶GNSSļȻRemondi1984hing the Global Positioning System(GPS)Ph ase Observable for Relative Geodesy :Modeling, Processing and Results, Center for Space Research, The University of Texas at Austin, May1984(ڴ˱Ϊ[2])ѾʹزλGNSSλ ڽͼ1ͼ4GNSSĻԭȻʵ ھȷλùƵϵͳʱͨ漰Ľһصѧֺ֧ͽͣṩ˽һ Ľ2. GNSSĻԭͼ1ʾԵͼʾ˽ǺһջGNSSƶջҲΪ (rover)̶ջԱΪվ(ԲִãDGPQοվ( 紦)ȻʵʵGNSS漰ֹǣΪ˵GNSSزλ ԭͼ1ϽʾÿǾ㲥ź(ͨԴDzڽջ ķнļͷͼʾ)ڽջʾԵرʾÿźŵһزΪ ͼ1ԷǵƵʽʾ˸òزʵϣز϶˵ (˫Ƽ(BPSK))һʱ㣬ջԲźŵزλջҲԸز λҽԱڽջ֮ľıɵزĸڡ ȻΪʱϸλⷽ棬Ժн͡ȻջԲյźŵزλջ֮ δ֪GPS LlƵز(1575. 45MHz)һӦľԼ19 (ߵźŵĴٶȣٶ)19ľӦزIJ 仰˵һʱ㿪ʼزλʼʱ㣬ǵջ (the integer number of cycles)δ֪ңӵһǵջ ӵڶǵջ֮IJδ֪ͨʾ_10+1+2ͼʾͼ1GNSSźزһЩڵ
ȷֱֵ۵ͼʾ˹ͨʾ0ʾķֵӦ ӽջǵضͨʾ+1ʾķֵӦڶһڣͨʾ -1ʾķֵӦһڣȵԽջλõĹȡڶڴǵ ջȷ֪ʶӵһǵջĸ(磬Ӧͼ1ֲϵıʾ+1) Լӵڶǵջĸ(磬Ӧͼ1ֲϵıʾ-1)ó һƵλ仰˵Կ(+1-1)óάͼʾеһλ ÿǵһϵóһƵλ磬(0+1)óάͼʾе
9һƵλͼͼ4õһͼӹ֪ջл֪ջܿеĶάȷ ڽջڸòȷԲڵ֪ʶݻڴλùơȻʵ GNSSʵ漰ֹһάȷͨնάδ֪ռ䣬 λĻԭ֪ջλôʾԲƵIJȷ ڣڸԲڵλûδ֪ͼ2b˾мͷߵͼӵĶάȷ߱ʾ Ϊ1һGNSSǵķ1㲥زźšڲȷ ʾƽǵ1زλùʱջλеÿ ߶Ӧͨ1㲥źŵض(wave front)ڲһز ȡڵ1ȷջɱΪλЩеһ ȣȷλδ֪ͼ2cʾͼ2bͬԪأȷԼ1㲥źŵز ⣬ͼ2cмͷĵڶߣʾԵָʾڶ GNSS( 2)ķ2ķֱЩ߱ʾ2㲥źŵزȡ 2ȷջɱΪλЩеһ˴1زλϢ֮⣬2㲥źŵز ҲλùˣԼٲȷǽܹջλ(ͼ )Բڵij߽ջλͼ2bʾֱ֮һϣڿԼ ջλ1IJӦЩ֮һϲͬʱ2Ӧ Щƽ֮һ仰˵ͨʹǵزλԼջλ ڻ߿1IJߺ2IJ֮ ĽԿͼ2cʾԲȷڴڹ۸߽Щ ӦڽջĹ۸ܵλˣȷڵλùҳ ջλЩеһϵֹǿڹƽջλˣڳԽʱʹ һǵźŵزͼ2dʾͼ2cͬԪأȷԼ12㲥 źŵز⣬ͼ2dмͷĵߣָʾ˵GNSS( ǻõķˣʾ3ĵز漯ͼ2dϲͼͼ2cʾԵĹ۸صĵ ṩڸȵĸϢ3IJ1 2IJ֮Ľϳ̶ṩ˹һضȷλ ĸʵָʾ磬Ԫ(000)ֱ۵رΪṩ˸߶ȿܵIJ ջܿλ벨Ԫ(000)ӦĽ㴦ȻⲻΨһܵ (ҲΪڵ)Ϊ(ͼ2cʾ)12IJÿָ Ϊȷλõĸʣһÿͼͼʾǻض
10ڵضڵλ(ʹͼӵı)(+20)8࣬1 桰+22IJ桰0ڵ3 Զ̶ȿֱ۵رΪṩ˹ڵӦȷλõĸʵָʾ3IJ桰+2Ǿڵ(+20)IJȻ 3IJ桰+2Զڵ㣬S࣬صƥ䲢Ԫ (+2,0, +2)ԲܶӦȷλáԿ1IJ2IJÿϣ Щ(ҲΪȡȡ)еÿһָɸʡ ͼ3бʾÿڵĴֱͷ˹ڵӦ ȷλõĸʵָʾעͼ3ʾĸʾԵģҲһӦͼ2d ͼʾΡͼ3ʾ(00)ڲȷھ(predominant probability)߶ȿܵǣԶӦڿԴΪȷصջλõ lEʯ1 IJ(integer solution)ͼ4ʾһʾԸӳ䣬Уֱͨͷָʾ벨ÿ ĸȻͼ4У(00)(+1-1)Ӧڵ ȵĸڸ£߶ȿ֮ܵһӦڿԴΪ ȷصջλõȷˣGNSS߿ܵŶȹȵȷֵ ϵ⣬Աṩ߾ȷȵGNSSλʹͳƲɨͨܵ ϻڵ(ͼ2ʾ)Աĸȷ3.ѧʽͽһĿ3. 1۲ʽͨʽṩGNSS۲ʽy = Aa+Bb+e (1)ymGPS۲(ɹ۲)abֱǾάȦǺͦѵδ֪ABʾʹõGNSSģ͵Ի۲ʽƾԼe(в)aĿδ֪زλģȣΪλ a e ӡνĻ߲(baseline parameters)b e Rp (μ[1]½2. 23. 1)۲ֵĿʱɸֲ̬ı ʽ۲yڿõĺܶƵϲй۲Ԫ(observation epochs)ۻλ۲ֵ۲ֵˣȷջλõĶ ǵһƵʣúܶ۲ֵһ㻯½ڡ [2. GNSS ԭ]⡣۲ʽԿǺܶ۲Լܶ͵Ĺ۲磬ӲGPS(DGPS)ϵͳõIJDGPSʹһοվοվλǾȷ ֪ġʹܹһʱ̵ĵЧӦʱƯDZ DGPSΪ˲ڴGPSνġѡԿ(SA) ʱӵĹʱ 2000Ѿùر SADGPSԲضʱڼ 㶨ӳٵЧӦȻˣջṩϢջԿǸϢ ڸĽλùƾȷ仰˵DGPSοվҪGNSSջʹõIJУ ĽλùЩУΪ۲ֵɵ۲ʽУӰGNSSģ Ƚⱳһԭʽϵͳ(1)ԭ˵رʽ漰ʵ δ֪(߲b)δ֪(a)֪һЩδ֪ ֵ´ʽϵͳĽ˵̫Ϲ۲ϵͳУδ֪Ŀڹ۲ֵĿڱδ֪ ĿĹ۲ֵӶʹϵͳdz(overdetermined)ĵʽϵͳͳԿ ϵͳÿܵĽϵͳĽҵϵͳ˵ܵĽ⣬ δ֪ʵδֵ֪زλGNSSģ͵һضԸŶ ʶ(ȷĸʽӽһ)ṩ˷dzȷĽ(ߴ ľȷ)ȻȽеķһǺƵϵز λȱȷض㻯(fixed)ΪGNSS GPSźžдԼ20ز زλȱóɴܵ·߸λ3. 2ʱϵһ㻯Լ½ڡ [2. GNSSĻԭ]Уʱϵһ Ȼͨʹһϵ۲ֵʱϸĽȷһǹ㲥زλڵһʱϵһ۲ֵڵڶʱ һ۲ֵͬȻԸزλӶʹزλȱı 仰˵ջһزλʽϵͳ(1)ijüȽδ֪aΪʵ(ʹ֪ aδ֪)÷ģΪ翨(Kalman)˲С˽ Ĺ֪ڵ⣬δ֪زλȵʵʹ ûпδ֪زλ(ϵʽϵͳ(1)еIJaĿ) ֵһʵ÷Ҳ÷ҲģΪֻҪ㹻ʱ䣬ȷͨ ӿ(ڸԪĹ۲ֵļ)ͨÿĹ۲ֵ (磬С˽)⡣ȻʵȱھǷʱġͨһ 㻨ʮĹгKalman˲ڻ ⣬Ҹøڶزλȵùƣ̫ʱҪʹ ̼δ֪aʵԵԼʹãڴӸֵϣڸȷ֮ǰڽԴ˽н3. 3ⶨ㻯ֵڽȶ㻯ֵ֪磬ⱻͶӰӳ䵽 μ IUGG2003session G04, Sapporo, Japan TeunissenP. J. G. (2003) GNSS Best Integer Equivariant estimation ½ 2. 1 2. 2 (ڴ˱Ϊ [3] )ʹܹػöⶨ㻯ԭʹùģ ʵϱһ֪ʶӶʹȵĸֵѡȷ Ľ˶δ֪(ʽϵͳ(1)bδ֪)Ĺơˣģ ȱ㻯ܵ⣬Աδ֪Ŀɴӵʽϵͳij (over-determination) 0㻯ÿóֵԼʹֵٵʽϵ ͳδ֪ĿȻȻȽж㻯ӿ̣ڲȷ Ƚж㻯ķ½еģܵ³ŴĽҪע⣬ָʾضʱ(磬ʼϵͳʱκʼ ʱ)ջ֮زδ֪ĿڣǶֵˣ˲ Ĺ۲ֵЩֵȷеأͨʱռԽԽĹ۲ֵ ״̬()ʾȵȶֵΪ˵ǵջʱ仯ľ룬ͨڽջв زźԱȷҪӵĸߴҪ˲ʼʱ ƵijʼֵƵĸȱ(BIE)(μ[3]ġBest Integer Equivariant htimation½4[1]ĵ4)ǹӣУûȷʵеȷ ģϵʹزλȵBIEʹ ϵļȨƽ⣬ý両ͶӦֵľȷȻ両 ͶӦֵľȷһõľȷ(μ[1]ĵ69ҳ½4. 1)BIEҪ㷽ڸȽӦ任ɸΪĿռ䣬 ڼȨʹõϵĹ(μ[1]½4. 2.2 71ҳ)һΪռı任ΪZ任[1]ĵ33-36 ҳ½ 3 1 4 л Teunissen The least-squares ambiguity decorrelation adjustment :a method for fastGPS integer ambiguity estimation Journal of GeOdeSy70 :65-82н˸ϸĽ[1]ĵ34ҳͼ3. 6 (34ҳ) ʾģռZ任Ķά[1]ĵ34ҳ3-6СDue to the highcorrelation between the individual ambiguities the search space in the case of GNSS is extremely elongatedso that the search for the integer solution may take very long. Therefore, the search space is first transformed to a more spherical shape by means of a decorrelation of the original float ambiguities (ڸ֮ĸԣGNSSµռ䱻죬 ӶʹöܺʱϳˣԭʼȵĽضȽ ռ任ɸӽ)ἰ
Z任(ڴҲΪZ任)ͬ(ҲӦ)Ƶеĸ Ҷ任Z任Ҳͬ(ҲӦ)Rnʵռ䵽Znռĸֵ ӳ䡣4.ϵļȨҲѾڻпܵƽջλõķBetti B.Crespi M.Sanso F. A geometric illustration of ambiguityresolution in GPS theory and a Bayesian approach Manuscripta Geodaetica (1993) 18 :317-330 (ڴ˱Ϊ [4] )һַвҪ ȣ෴÷漰"sum[ming]over all possible ambiguities with proper weights directly derived from the likelihood function(ֱӴȻʵȨֵ пܵ)(3 ҳע4. 2)[4]УֵһЩȡƽơIt has to beunderlined that ont he practical implementation of. . . in reality we have extended the summation not over the whole grid of ambiguities butjust to the closer knots as the function.. . drops very quickly to zero when attains large
values (Ҫǿǣʵʵ......ʱʵDzδȵդչ
ܺͣݺ......չϽĽ......´ﵽֵʱܿ콵
)(327ҳҲ34-39)5.ҪҪĽGNSSزλʵֶλϵͳӶԿȶûѺ ķʽýջλõľȷ
ʵʩĿҪرأʵʩĿڿ ǸĽԵͬʱٻȶ;ȷĽĿ£Ľмķʵ ʵʩȨҪķװվ ͼɶʡ
ڽϸͼʵʩڸͼͼ1ʾʾ˾ǺһջGNSSͼʾı ͼʾʾ֪ջλôеIJȷͼʾ ıͼ2bʾʾͼӵIJȷбʾһ(1) IJ棬ͼʾеһزλȣͼ2cʾʾͼӵIJȷͼ2bIJ棬бʾڶ (ǻIJ棬ͼʾеزλȣ
14
ͼ2dʾʾͼӵIJȷԼͼ2bͼ2cIJ棬бʾ (ǻIJ棬ͼʾеزλ ȣͼ2eͼ2d֮ͬͬʾͼʾزλֵӦ ڵ㣻ͼ3ʾʾ֪ջλλеIJȷ IJԼÿĸʣÿȵֵÿϣ ͼʾıͼ4ͼ3֮ͬͬʾڵлͬĸʶӦ ȷ⣬ͼʾıͼfeͼʾ˱ķһʵʩͼͼuͼʾ˹ڱķһʵʩٶȵʾ洦ͼ6aͼ6bͼڱķһʵʩУÿʾ ֵָɸγɺѡIJԼڵһѡѡIJ裻ͼ7ͼʾڱķһʵʩȵѡѡ Ḷ́ͼ8ͼʾ˱ķһʵʩһֵͼͼ9ͼʾ˱ķһʵʩһֵͼУѡ ĺѡĿѡĺѡͼ10ͼʾ˱ķһʵʩһֵͼУѡ ĺѡĿڱĿųһЩѡͼ11aͼlibͼIlcͼʾ˱ķʵʩͼУʹ ӰȨƽγɣͼ12ͼʾͼIlaͼIlcͼһ֣ͼ13aͼ1 ͼʾͼIlaͼIlcͼʾIJ֮һ(1170)ϸ ڣͼ14ͼʾѡ/γɺѡļȨƽ֮ǰIJвĸʷֲĻ (scaling)ͼ15ͼʾ˱ķʵʩͼУȷʽϵľȷ (formal precision)õľȷ(achieved precision)Աṩλùƹ ̵Եָʾͼ16aͼʾͼ15ͼʾķضʵʩͼ15ͼһ֣ͼ16bͼ16eͼʾʵʩӣڸõľȷʽϵ ȷȵṩԵָʾ(磬㡱㡱)ͼ17aͼ17bͼʾ˱һʵʩķͼ֣Уṩ iFlexԵָʾĹзֱʹų(unconditional inclusion and exclusion thresholds)ͼ18aͼ18dͼʾӣУڴӲͼ17aͼ17bʵʩ еʵʩУõľȷṩԵָʾ
ͼ19ͼ20ͼʾ˱ķʵʩͼУڸĽ λùƣж϶źŵĸ֮Ǿе(legacy)۲ֵͼ21ͼ22ͼʾ˱ķʵʩͼУ ɸ˲״̬пȵӼй۲ȣͼ23ձһЩʵʩļGNSSջϵͳĿͼͼMʾͼʾձһЩʵʩ綨λΣԼͼ25ʾͼʾձһЩʵʩʵʱ˶ѧλ
ʵʩʽڽϾʵʩעʵʩ Աṩõ⣬ּκηʽƱķΧķΧ ȨҪرأϹᴩ˵鵥ʵʩԱ以ų ij̶γɽһʵʩ1.ѡѡѾʶЧΪȨƽѡѡĿԼٵĴҪ ĽһʵʩѡγɼȨƽ⣬ѡ ȷеأѡбȻڲοѡIJοȷŵ ĺѡ(磬ĺѡ˲״̬ ȵġ⡱Եͳƾ)ȷ˸ѡˣڶҪڼȨƽʹ ĺѡѡȡѺѡ仰˵ȡѺѡ 븡ͳԶѺѡ븡ԽԶԱõԽͣ ӶʹͳϽӽѺѡΪȨƽѡĿĺѡ Ľ˼ȨƽĿɿù̵ŵ-Ҫһ㶨㻯ȣӶʹ˴ض㻯 ķգ-ѡѡļȨƽȷ⣬ӶʹòҪִܹ Ĺ֮ǰȴʮӣԼ-ڳԼӿ측ʱͨѡѡļȨƽṩľȷȱͨ Խж㻯(һʱ㶨㻯һЩزλ(ʽ(1))) ľȷȸΪʵһʵʩƴGNSSŵIJ()ӶGNSS еÿGNSSǻGNSSźŵĹ۲ֵ۲ֵ͵״̬(ٰ GNSSźŵÿƵʵĸ)˲ÿȹGNSS źŵĽջʹGNSSźŵGNSS֮GNSSźŵʵ ƣ˲ڹƸ״̬ÿȵĸֵֵָɸ Ƶĸֵһ飬Ա㶨ȺѡѡһĿĺѡڵһУڲοѡIJοȷһޣ ԼѡѡļȨƽÿѡڼȨƽбȨеȿȷջλû߿ڿ (augment)λϢ(磬紦)ݡͼfeͼʾ˱ķһʵʩͼͨͼfeʾ 100ڹƴӶȷλõGNSSźIJķҪƵIJǹڵʽ(1)(μ)δ֪δ ֪Ҳ˵Щγaδ֪زλȣԼγb ʵ߲ÿÿ۲ز(ÿ۲Ƶʣ߸һأ˹۲ֵÿ Ƶ)һδ֪زλȣһδ֪ÿǷ ز157542MHzز(GPSL1Ƶ)122760MHzز(GPS L2Ƶ) 117645MHzز(GPS L5Ƶ)۲Ƶ(߸һأ ƵʵĹ۲ֵ)۲10GNSSǵź(߸һأ 10GNSSǵĹ۲ֵ)30δ֪زλģ仰˵ aά30ȡڽջǣпÿǽ۲һƵ(߸һأһ ƵʵĹ۲ֵ)ÿǹ۲Ƶ(߸һأƵ ʵĹ۲ֵ)Ȼ۲(߸һأù۲ֵ)ʹпõƵģ ΪϵͳijںܶʹõGNSSģṩĻ߲bάȡʹõ GNSSģ͵GNSSģͰݵIJλ(Xy)ʱ(t) ԼͶĴӰGNSSźŰGNSSǵźڲͬGNSS ʩǵź(GPSGL0NASSߵź)ͬʱʹá÷ҪƵIJԼGNSSźŶȷGNSSջλõ÷ڴǻGNSSźŵĹ۲ֵ(120)IJ (ȡ)źţԼһʱȷGNSSǵGNSSźŵ λʱϸزλһƵȷGNSS ǵĵʱ䡣ǰѾ洢Ժ() Ĺ۲ֵڻ120۲ֵɻ(S࣬)ɵʽ(1) yһϵй۲ֵЩ۲ֵһʱϻõģDZ˳ (ܿԴӴз˳Щ۲ֵ)ڲ140У۲ֵ͵˲(Kalman˲)У˲ ʹù۲ֵδֵ֪˲״̬京ÿһδֵ֪ ֵ͵˲в״̬Ӧرڽӽʵʱ(ʱΪʵʱ) ͨԪ(by epoch)˳۲ֵںһԪ Ĺ۲ֵ״ٰ̬ÿһδ֪زλȵʵزλȵЩʵеÿһڴ˱ΪȡGNSSźŵÿƵʣÿǴһGNSSźŵĽ ƵʵĸGNSSźŵĽջ㲥GNSSźŵGNSS֮GNSS źŵʵȿڽջGNSS ֮GNSSźŵʵȻ¶֮ʵ(ģ (single-differenced ambiguity))ڽջ͵һGNSS֮GNSSźŵĵһ Լڽջ͵ڶ GNSS֮GNSSźŵĵڶȻ ¶֮ʵ(ģ)ڵһջGNSS֮ GNSSźŵĵһԼڵڶջͬһ GNSS֮GNSSźŵĵڶ ȻǶֵʵ(˫ģ (double-differenced ambiguity))Ҳǣһ类γΪ¶֮ IJڵһջ͵һGNSS֮GNSSźŵĵһԼڵڶջ ͵һ GNSS֮GNSSźŵĵڶڶ类γΪ¶ ֮IJڵһջ͵ڶGNSS֮GNSSźŵĵԼڵڶ ջ͵ڶ֮GNSSźŵĵ˫ģȱγΪڵһ Ⱥ͵ڶ֮IJ˫ΪʲôƵʵĸȶΪ ʵƵԭ˲Ϊ״̬ÿȹƸֵ˲Ǹ⣬ ״̬ÿȵĸֵKalman˲˳С˹ȽƻɱȽϵݴ ԣԺʵ˲Kalman˲GNSSݴǺܳģ һܹһʱԵ״̬ڡIntroduction to Random Signals and Applied Kalman FilteringBrown, R. G, &Hwang, P. Y. C. , John Wiley & Sons, 3rd Ed, ISBN :0-471-12839-2пҵӦGPSݴKalman˲ͨزλȲʵֵøȻӦԼز λģҲǣֵָɸγɸÿֵڲ160 УֵָɸÿƵĸֵԱ㶨Ⱥѡڴڲֹ һֵַָɸĸֵ˲160¶Ⱥѡ ض̶븡ӦֵĶ磬߸ֵΪ۲߸Ƶ(߸һأ ߸ƵʵĹ۲ֵ)һʱϵĸ¹(2. 11,3. 58-0. 52-2. 351. 01,0. 981. 50)ڸУֵ2. 11¶֮ʵƲ-ͨ140˲ΪʵڵһƵϴӵһGNSSǵջ Լ-ͨ(ɻGNSSλȷ)ԹƷƵڵһƵϴӵһǵջνĴԹƷṩͼͼ2eͼʾIJȷı߽磬 Уȷ(Բ)ıΪͨԹƷƵ ƵIJǸֵ2. 11ζŸڵһȣ벻 ȷ2. 11ڡ˸ֵ2. 11ڵһƵϴӵһǵջ ʵơںܶӸγļϵĿԡ仰˵Ӿʵ ĦάռRnͶӰĦάռZnпܵºܶͬ ѡͶӰռеһǽÿ(ÿ ֵ)ȡӽֵĸֵ1.50ȡ1 ˵һȺѡ(2,4, -1, -2,1,1,1)ֵ1. 50෴ȡ2ṩ˵ڶȺѡ(2,4, -1, -2,1,1,2)ڶֵ3. 58͵ֵ-0. 52ҲԱֱȡ3͡0(Ҫ סʹʽϵͳ(1)IJвeСĿ)˸ӵһϵеѡ(2,3, -1, -2,1,1,1)(2,4,0, -2,1,1,1)(2,3,0, -2,1,1,1)(2,3, -1, -2,1,1,2)(2,4,0, -2,1,1,2)(2,3,0, -2,1,1,2)潫ͼfeʾִZ任Ŀѡ140a160ֵָͨɸֵγɻֵĺѡ ѡΪȺѡγȺѡIJ160ѡԻ֮һ ȷҪٺѡһʵʩУָͨɲ160γͼͼʾ͵ ȷڵкѡʵʩеŵԷdzߵĸ֪ ȷ˲ȷڣͬߵĸʻ֪ǵĺѡеһ ѡȷǸȻѡĿܱ磬ȷÿ Ȱֵܵ(¶Ӧͼͼ2eʾ)ÿ Ⱥѡд߸(ͼ2dͼӽʾ)67(6 ߴ)ѡ279936ѡͼ6aͼ6b÷ʵʩرDz160漰ÿȺѡе߸Ȼӣ жڻ߸ȼӦĸֵ
19
Ȼͼ5aѡѡIJ180-ڲ160жĺѡУʶһοѡ-οѡIJοУοʾѡ븡 ӽ̶ȣ-ڲο庬(inclusionthreshold)ڴ˱Ϊһ ޣԼ-ڲ160жĺѡУѡڵһĺѡѡѡ˲180һǻڲοѡ븡Ľ ̶ȷġʹܹѺѡжụ̀ѱΪǶԸù ƹ̵̶ȵĶ200γڲ180ѡкѡļȨƽУںѡ ȷԵĸȷÿѡȨءѡԽȷ ڼȨƽеȨԽüȨƽγµĸ⣬ڴ˱ΪiFlexiFlex һЩܵȽ((ȷڵ)пܵȽ )ļȨѾڸʱ䣬iFlexԺļʱ ȷ潫ͼfeʾִZ任Ŀѡ200aӳһضȺѡ߷Ϲ۲ֵij̶ˣ ۲вĴС(size)ɱľڻԼʵ+
ȨҪ
1.һڹƴӶȷλõȫϵͳ(GNSS)źIJ ӶGNSSеÿGNSSǻGNSSźŵĹ۲ֵ۲ֵ͵״̬˲״ٰ̬GNSSź ÿƵʵĸȣÿȹGNSSźŵĽջʹ GNSSźŵGNSS֮GNSSźŵʵƣ ˲Ϊ״̬ÿȹƸֵѡ״̬ȵӼֵָɸӼĸȵƵĸֵԱ㶨ѡȷÿѡԼγѡļȨƽ
2.ȨҪ1ķУѡ״̬ĸȵӼ ֮һ (a)˲Ա۲ֵƸֵ걸 Ӹģֵ걸ѡȵӼԼ(b)˲ ۲ֵѡİȸģֵ걸ٵĸ ֵIJּУֵIJּ״̬ĸȵ
3.ȨҪ12ķѡѡ뱻ٴʱ εǵƵӦĸȣΪӼĸ
4.ȨҪ13еһķУγȨƽѡڵһĵһĿĺѡУһǻ οѡIJοȷģԼγѡѡļȨƽÿѡȨƽнмȨ
5.ȨҪ14еһķһͨеһȷе(1)οѡ бȽϣ( ͨοѡοѡĸģ ijбȽȷĽӣԼģûбѡеһȵ ĸֵ
6.ȨҪ15еһķʹȨƽ GNSSźŵĽջλ
7.ȨҪ45еһķУοѡǾ ĺѡ
8.ȨҪ47еһķУѡɲ ֵɣѡIJֵǶѡȵ ״̬ͳƾĶ
9.ȨҪ48еһķУһޱȷΪ һοķοıԼοľ
10.ȨҪ49еһķѡѡĵһ ĿСڵڶޣԾķѡѡʼսںѡ ѡڶĿĽһĺѡγȨƽڶĿѡ ѡĵһĿ붨ҪȨƽеĺѡСĿĵڶ֮ IJ
11.ȨҪ410еһķѡѡĵһ ĿڵޣԾѡѡʼսγȨ ƽʱųĿѡѡУĿѡѡĵһĿ붨 ҪȨƽеĺѡĿĵ֮IJ
12.ȨҪ111еһķУγȨƽ ȷѡȷĺѡֵ ȷΪֵ֮ȵ ѡԼ ִжԵһĿĺѡѡ
13.ȨҪ112еһķУγȨƽ ȷѡȷĺѡֵ ȷΪֵ֮ȵ ѡԼ γȨƽ
14.ȨҪ1213еһķͨ -Эѡ
15.ȨҪ1214еһķԤ ΧУʹ˲ķ-Э
16.ȨҪ1214еһķ һʹ˲ķ-Э
17.ȨҪ116еһķ˲״̬ÿȵĸֵԼ״̬ Эֵ˲ĵЭֵȷʽϵľȷֵʽϵľȷֵ ǶԿɻõľȷȵĶȷȨƽõľȷֵõľȷֵʽϵľȷֵбȽԻֵԼ ֵָʾ״̬ȷ
18.ȨҪ17ķУֵΪõľȷֵ ʽϵľȷֵ֮ȶõġ
19.ȨҪ1718еһķȷλõֵʱʱ̣Լȷʱ̴ȷʱָ֮ʾ״̬ȷ
20.ȨҪ1719еһķ ƻڼȨȷĽջλõõľȷȣԼλõõľȷںޣָʾ״̬ȷ
21.ȨҪ1720еһķ ƻڼȨȷĽջλõõľȷȣԼλõõľȷȲųޣָʾ״̬ȷķ
22.ȨҪ121еһķGNSSǻGNSSźŵһƵʵĹ۲ֵԱڶ ʱ̵Ĺ۲ֵ۲ֵʱ״̬ĸȣ ȷڸǵһźʱжϣԼ˸жϵһźŵ״̬ĸάΪڷ ж֮ǰֵ
23.ȨҪ22ķУһźŵĹ۲ֵһ ʱ̲ãȷڸǵһźʱжϡ
24.ȨҪ2223еһķУȷ ǵһźʱжϡ
25.ȨҪ22Mеһķźŵĸж ֮źŵĸٻָ˸жϵźŵ״̬ĸάΪ ڷж֮ǰֵΪһȣڻָ֮źŵĵڶ 뵽״̬
26.һڹƴӶȷλõȫϵͳ(GNSS)źIJ װãװðջջڴӶGNSSеÿGNSSǻGNSSźŵĹ۲ֵ˲˲ٰGNSSźŵÿƵʵĸȵ״ ̬ÿȹGNSSźŵĽջʹյGNSSź GNSS֮GNSSźŵʵƣ˲ڹ ״̬ÿȵĸֵ ԪԪ ѡ״̬ĸȵӼֵָɸӼĸȵƵĸֵԱ㶨 ѡȷÿѡԼ γѡļȨƽ
27.ȨҪװãУԪ֮ͨһѡ ״̬ĸȵӼ(a)˲Ա۲ֵƸ ֵ걸Ӹֵ걸ѡȵӼ Լ(b)˲Ա۲ֵѡİȸģֵȫ ٵĸֵIJּУֵIJּ״̬ ȵӼ
28.ȨҪ27еһװãУԪѡ 뱻ٴʱεǵƵӦĸȣΪӼĸ
29.ȨҪеһװãУΪγȨƽ ԪѡڵһĵһĿĺѡУһǻ οѡIJοȷģԼγѡѡļȨƽÿѡȨƽнмȨ
30.ȨҪеһװãУԪһͨеһȷе(1)οѡ бȽϣ( ͨοѡοѡĸ ijбȽȷĽӣԼûбѡеһģȵ ĸֵ
31.ȨҪеһװãУԪʹ ȨƽGNSSźŵĽջλ
32.ȨҪĺ30еһװãУοѡǾ ĺѡ
33.ȨҪ32еһװãУѡ ֵɣѡIJֵǶѡ ״̬ͳƾĶ
34.ȨҪ32еһװãУԪڽ һȷΪеһοķοı Լοľ롣
35.ȨҪ34еһװãУԪ ѡѡĵһĿСڵڶޣԾķѡѡʼ ںѡѡڶĿĽһĺѡγȨƽ ڶĿѡѡĵһĿ붨ҪȨƽеĺѡ СĿĵڶ֮IJ
36.ȨҪ35еһװãУԪ ѡѡĵһĿڵޣԾѡѡʼսγȨƽʱųĿѡѡУĿѡѡ ĵһĿ붨ҪȨƽеĺѡĿĵ֮
37.ȨҪ36еһװãУΪγȨƽ Ԫȷѡ ȷĺѡֵ ȷΪֵ֮ȵ ѡԼ ִжԵһĿĺѡѡ
38.ȨҪ37еһװãУΪγȨƽ Ԫȷѡ ȷĺѡֵ ȷΪֵ֮ȵ ѡԼ γȨƽ
39.ȨҪ3738еһװãУԪͨ ķ-Эѡ
40.ȨҪ3739еһװãУԪ ԤΧУʹ˲ķ-Э
41.ȨҪ3740еһװãУԪ һʹ˲ķ-Э
42.ȨҪ41еһװãУ˲ڹ ״̬ÿģȵĸֵԼ״̬Эֵ Ԫڻ˲ĵЭֵȷʽϵľȷֵʽϵľȷֵ ǶԿɻõľȷȵĶȷȨƽõľȷֵõľȷֵʽϵľȷֵбȽԻֵԼ ֵָʾ״̬ȷ
43.ȨҪ42װãУԪڻΪõľȷ ֵʽϵľȷֵ֮ȵֵ
44.ȨҪ4243еһװãУԪ ȷλõֵʱʱ̣Լȷʱ̴ȷʱָ֮ʾ״̬ȷԡ
45.ȨҪ4244еһװãУԪ ƻڼȨȷĽջλõõľȷȣԼλõõľȷںޣָʾ״̬ȷ ԡ
46.ȨҪ4245еһװãУԪڹƻڼȨȷĽջλõõľȷȣԼλõõľȷȲųޣָʾ״̬ȷķ
47.ȨҪ46еһװãУ˲ڴ GNSSǻGNSSźŵһƵʵĹ۲ֵԱڶʱ̵Ĺ۲ ֵԪڻ۲ֵʱ״̬ĸȣȷڸǵһźʱжϣԼ˸жϵһźŵ״̬ĸģάΪڷ ж֮ǰֵ
48.ȨҪ47װãУԪһźŵĹ۲ ֵһʱ̲ãȷڸǵһźʱж
49.ȨҪ4748еһװãУԪ ȷڸǵһźʱж
50.ȨҪ4749еһװãУԪ źŵĸж֮źŵĸٻָ˸жϵźŵ״̬ άΪڷж֮ǰֵΪһȣڻָ֮ źŵĵڶ뵽״̬
51.ȨҪ50еκһװ
52.վȨҪ51еκһװ
53.ָļԱ㵱ڼԪִ ʱʵָȨҪ125еκһķ
54.ɶʣ֮һ˸ȨҪ53ļļ ɶʣԼ˸ȨҪ53ļļɶ
ȫժҪ
ṩڹƴGNSSźŵIJ()ķװԶGNSSеÿGNSSǵGNSSźŵĹ۲ֵ(4120)۲ֵ͵״̬˲״ٰ̬GNSSźŵÿƵʵĸģȣÿȹGNSSźŵĽջʹյGNSSźŵGNSS֮GNSSźŵʵƣ˲ڹ״̬ÿȵĸֵ(4140)ѡ״̬ĸȵӼ(4150)ֵָɸӼĸȵƵĸֵԱ㶨Ⱥѡ(4160)ȷÿѡγѡļȨƽ(4200)ںпʹȨƽȷջλã߿ʹȨƽԱڿλϢ紦
ĵG01S19/44GK102124364SQ200980131269
2011713 200985 Ȩ2008819
Uֶ :챦˾