51La

亚星游戏官网-www.yaxin868.com

山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-05-07切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

一种强干扰背景下的任意阵型微弱信号源角度估计方法

时间:2025-04-22    作者: 管理员

专利名称:一种强干扰背景下的任意阵型微弱信号源角度估计方法
技术领域:
本发明属阵列天线技术领域,具体涉及一种强干扰背景下的任意阵型微弱信号源角度估计方法。
背景技术:
目前,基于阵列天线的微弱信号检测和参数估计方法正在被广泛的应用于雷达、通信、导航、声纳以及地震探测等诸多领域。阵列天线技术具有灵活的波束控制、高的信号增益、极强的抗干扰能力以及高的超分辨能力等优点,因而受到人们的极大关注。强干扰和低信噪比环境都将直接影响微弱信号的检测和估计工作。特别是存在有强干扰的情况,信号相对于干扰很弱,微弱信号被强干扰淹没,无法准确检测出来。甚至,强干扰可能会作为期望信号而被错误检测出来,导致系统对微弱信号的波达方向(Direction of Arrival,D0A)估计精度受到很大影响。因此,在强干扰和低信噪比背景下,有效抑制干扰,获得微弱信号高精度角度信息,具有极为重要的研究意义。国外的研究成果主要是以Jian Li等人为代表提出的RELAX (松弛算法)[1’2],其主要观点是用信号分离的方法使得包含多个信号的信息阵列输出数据分离成几个数据块,具体的一个数据块包含某一信号的信息,从阵列接收数据中减去干扰就可以达到抑制的目的。国内针对此问题的研究则主要可以分为三类方法第一类是使用改进的波束形成方法,在子阵上进行波束形成零陷以抗干扰的特征波束形成法,主要以柴立功[3]、徐亮[4]等人为代表,其中文献[3]要求干扰源个数和入射方向精确已知,然而在强弱信号并存时,估计信源是会有较大偏差;文献[4]则不需要已知干扰波达方向,且只需要做一次特征值分解,但其缺陷在于适用范围有限,只适用于一维均匀线阵。第二类是根据先验知识构造阻塞矩阵对干扰进行预处理的干扰阻塞法(JJM),主要以陈辉[5]、王姝[6]、苏成晓m等人为代表,该方法能有效抑制掉空间确知方位强干扰的影响从而实现对微弱信号的正确估计,但是强干扰导向矢量估计误差会导致强干扰泄露,并且在抑制掉干扰的同时也会抑制掉部分期望信号。第三类是张静[8'9]等人提出的基于噪声子空间扩充法,该方法将强干扰导向矢量所在空间纳入噪声子空间进而构造出扩展的噪声子空间(有效抑制强信号谱峰),再在此基础上利用经典Music算法就可以得到弱信号的DOA估计。目前常用的微弱信号DOA估计的三种方法虽然在一定程度上可以有效估计并检测出微弱的期望信号,但都还不够完善,其缺陷分别如下I. RELAX (松弛算法),此方法每一步估计都需要通过反复迭代来实现,尤其是当强干扰和弱信号夹角较小时收敛速度很慢,故运算量相当大,这在实际应用中很难实现。2.特征波束形成法和干扰阻塞法,要求干扰源个数和入射方向精确已知,且应用于没有阵列误差的情况,这在实际应用中也很难实现。3.噪声子空间扩充法的缺陷在于对子空间扩张后输出信号进行角度估计时只能采取传统的MUSIC估计方法,继而带来了二维或多维谱峰搜索复杂度高的问题。
文中引用的文献如下[I]Li Jian and Stoica P.Efficient mixed-spectrum estimation withapplications totarget feature extraction[J]. IEEE Transactions on signalProcessing, 1996, 44(2):281—295 ;[2]Jian Li, Guoqing Liu, Nanzhi Jiang, P Stoica, Airborne Phased ArrayRadar:Clutter And Jamming Sup—pression And Moving Target Detection And FeatureExtraction[A]. IEEE 2000 Sensor Array And Multichannel Signal ProcessingWorkshop[C]: IEEE, 2000. 240-244 ;[3]柴立功,罗景青.一种强干扰条件F微弱信号DOA估计的新方法[J1]电子与信息学报,2005,27 (10) :1517—1520 ;
[4]徐亮,曾操,廖桂生,李军.基于特征波束形成的强弱信号波达方向与信源数估计方法.电子与信息学报,2011 ;[5]陈辉,苏海军.强干扰/信号背景下的DOA估计新方法[J].电子学报,2006,4(3) : 530—534 ;[6]王姝,何子述,李会勇.宽带强干扰背景下的弱信号源DOA估计方法[J].现代雷达,2006,28(9) :69-71 ;[7]苏成晓,罗景青,解礼.用阻塞矩阵法实现弱信号二维DOA估计.计算机工程与应用;[8]张静,廖桂生.强信号背景下基于噪声子空间扩充的弱信号DOA估计方法[J],系统工程与电子技术,2009,31 (6) : 1279-1283。[9]屈金佑,张剑云.一种新的强干扰条件下微弱信号DOA估计算法[J],.航天电子对抗,2011,27(5) :61-64;[10]王永良,陈辉,彭应宁.空间谱估计理论与算法[M].北京清华大学出版社,2007.

发明内容
本发明的目的在于提供一种强干扰背景下的任意阵型微弱信号源角度估计方法。为达到上述目的,本发明采用了以下技术方案。I)对阵列接收信号的协方差矩阵进行特征分解得M个特征值以及与特征值分别对应的特征向量,所述阵列接收信号包括P个弱信号、q个强干扰以及噪声;根据特征值由大到小的顺序对特征值对应的特征向量进行排序;2)经过步骤I)后,用前q个特征向量生成强干扰子空间,用第q+Ι到第q+p个特征向量生成微弱信号子空间,用第q+ρ+Ι到第M个特征向量生成噪声子空间;3)构造与强干扰子空间正交的修正投影阻塞矩阵B,利用修正投影阻塞矩阵B对阵列接收信号进行修正投影变换,经过修正投影变换后再对阵列接收信号的协方差矩阵进行特征分解,获得新的微弱信号子空间和噪声子空间;4)经过步骤3)后,利用空间谱函数估计微弱信号的波达方向。所述步骤I)的具体方法为以M元等间距排列的均匀线性阵列为例,假设阵列接收到P个方位角分别来自Q1, θ2,...,θρ的远场独立微弱信号,假设阵列接收到(!个方位角分别是S1,δ2, ..., δ q的强干扰,则t时刻阵列接收信号表示为AakApSa)+^ (t)+n(t),Ap= [a ( Θ 工),a ( θ 2),· · ·,a ( θ p) ],Aq= [a ( δ ), a ( δ 2), . . . , a ( δ q) ], a ( Θ j)为对应弟 i 个微弱信号的导向矢量,i = 1,…,P,a ( δ k)为对应第k个强干扰的导向矢量,k=l,…,q ;s (t)为微弱信号的复包络矢量,j(t)为强干扰的复包络矢量;n(t)为阵列的高斯白噪声矢量;对阵列接收信号的协方差矩阵进行特征分解,表示为Rx=E[xH(t)x(t)]=UHAU,A表示特征值λ 的对角矩阵,U表示特征向量U1的矩阵,1=1,2, ···, M ;对Λ内的特征值由大到小排序,即令λ , λ 1+1,1+1 ( Μ,根据特征值由大到小的顺序对特征值对应的特征向量U1进行排序,得U= (U1, U2,...,uq,
Uq+1,Uq+2, · · · j Uq+p, Uq+p+1, Uq+p·
+2,· · ·,Ujy) °所述步骤2)的具体方法为微弱信号子空间记为Us, Us=Span (uq+1, uq+2, . . . , uq+p),噪声子空间记为Un,Un=span (uq+p+1, uq+p+2,. . . , uM),噪声子空间与微弱信号导向矢量正交,强干扰子空间记为Uj,Uj — sp£in (Ui,U2,. . .,Up) ο所述步骤3)的具体方法为构造与强干扰子空间正交的修正投影阻塞矩阵B,B=I-Uj(UjhUj)Ujh, I表示MXM维单位矩阵,利用修正投影阻塞矩阵B对阵列接收信号进行预处理,得到信号Y(t),Y(t) =BX(t),再对信号Y(t)的协方差矩阵进行特征分解,根据特征值由大到小的顺序对特征值对应的特征向量排序,用排序后的前P个特征向量生成新的微弱信号子空间U' s,用剩余的特征向量生成新的噪声子空间U' n。所述空间谱函数为H / η\ττ>ττ n\,a( θ )表不微弱信号的导向
α Ψ)υηυη α(υ)
矢量,Θ表不微弱信号的方位角。本发明所述估计方法只需根据强干扰个数构造修正投影阻塞矩阵,继而对快拍数据矢量作修正投影变换后即可利用常规的空间谱估计算法估计弱信号的D0A。与干扰阻塞法相比,本发明无需预先精确已知干扰的来波角度,并且不会牺牲有效阵元的数量。与扩充子空间法相比,因其在对阻塞矩阵输出信号进行角度估计时可采取各种先进的DOA估计算法,故更为灵活多变;并且较之扩充法,修正投影阻塞法对快拍数据多做了一次特征分解,因此,在低信噪比情况下,本发明的估计偏差低于扩充法。即便多个强信号与多个弱信号并存情况下,本发明依旧能够有效、精确的估计出弱信号的D0A。


图I (a)为常规MUSIC方法谱估计的结果,图I (b)为修正投影阻塞法谱估计的结果;图2为不同干扰数目下估计标准偏差同信噪比的关系;图3(a)为三种方法成功概率同信噪比的关系,图3(b)为三种方法的估计标准偏差同信噪比的关系,图3(c)为三种方法的相位误差对测角的影响;图4为三种不同方法的估计标准偏差同阵元数的关系;
图5 (a)为Y阵传统MUSIC方法谱估计的结果,图5 (b)为Y阵修正投影阻塞法的谱估计结果;图6(a)为二维不同阵型下成功概率同信噪比的关系,图6(b)为二维不同阵型下估计标准偏差同信噪比的关系。
具体实施例方式下面结合附图和实施例对本发明作进一步说明。I)对阵列接收信号的协方差矩阵进行特征分解得M个特征值以及与特征值分别对应的特征向量,所述阵列接收信号包括P个微弱信号、q个强干扰以及噪声;根据特征值由大到小的顺序对特征值对应的特征向量(列矢量)进行排序;2)经过步骤I)后,用前q个特征向量生成强干扰子空间,用第q+Ι到第q+p个特 征向量生成微弱信号子空间,用第q+ρ+Ι到第M个特征向量生成噪声子空间;3)构造与强干扰子空间正交的修正投影阻塞矩阵B,利用修正投影阻塞矩阵B对阵列接收信号进行修正投影变换,经过修正投影变换后对阵列接收信号的协方差矩阵进行二次特征分解,获得新的微弱信号子空间和噪声子空间;4)经过步骤3)后,利用空间谱函数估计微弱信号的波达方向。具体步骤如下对于M元等间距排列的均匀线性阵列,噪声为相互独立的零均值高斯白噪声,
且与信号不相关,假设阵列接收到P个方位角分别来自Q1, θ2,...,θρ的远场独立
微弱信号,假设阵列接收到q个方位角分别是δ2,...,的强干扰,设阵列中各
阵列单元是各向同性且不存在通道不一致、互耦等因素的影响,则t时刻阵列接收信
号表示为X (t) =Aps (t) +Aqj (t) +n (t), Ap, Aq分别表示强干扰和微弱信号的阵列流型,
Ap=[a( Θ J, a( Θ 2),· · ·,a( Θ p)],Aq=[a( δ J, a( δ 2),…,a( δ q)],a( Θ )为对应第 i
~ d . a ^ (M-l)d . d 1H-\2π_Sinyf-]2π-sm Θ,
个微弱信号的导向矢量,) = l,e 1 ,…,e Λ,i = i,…ρ,
_ d , ., (M-l)d .η
-λ π—^ιη χ,-\2π--—smc>t
a(sk)为对应第k个强干扰的导向矢量,)= l,e " ,...,e 1,
k=l,…q,阵列单元间距d为信号中心频率对应的半波长,j是虚数单位,J2=-I ;s(t)为微弱信号的复包络矢量,s(t) = [Sl(t),S2(t),-,Sp(t)]T, j(t)为强干扰的复包络矢量,j(t) = [j1(t), j2(t),···, jq(t)]T;n(t)为阵列的均值为O、方差为σ 2的高斯白噪声矢量,ηα)=[ηια),η2α),···,ηΜα)]τ,τ表示转置,H表示共轭转置,λ为入射信号载波波长;对阵列接收信号的协方差矩阵xH(t)x(t)进行特征分解,表示为Rx =五[3^(/)*(0] = AiiRsA= +A9R7A +(T2I = UhAU,E 表示求期望,Rs 是微弱信号的协方差矩阵,R1为强干扰的协方差矩阵,Λ表示特征值X1的对角矩阵,A=diag(A1,λ2,…,λΜ),U表示特征向量U1的矩阵,1=1,2, ...,M ;对Λ内的特征值由大到小排序,即令λ,λΜ+1彡Μ,根据特征值由大到小的顺序对特征值对应的特征向量U1进行排序,得IMu1, U2,…,Uq, uq+1, uq+2,…,uq+p, uq+p+1, uq+p+2,…> Um) >微弱信号子空间记为Us, Us=Span (uq+1, uq+2, . . . , uq+p),即由中间p个大特征值对应的特征向量形成的微弱信号导向矢量所张成的子空间,噪声子空间记为Un,Un=span (uq+p+1, uq+p+2, . . .,uM),噪声子空间与微弱信号导向矢量正交,特征向量矩阵中前q个特征向量张成强干扰子空间,强干扰子空间记为U」,Uj = span(U1, u2,. . . , up)。构造与强干扰子空间正交的修正投影阻塞矩阵B,B=I-Uj (UjhUj) ^1U/, I表示MXM维单位矩阵,利用修正投影阻塞矩阵B对全局子空间作预变换得到矩阵W,W=BU=BtUj, Us, Un] =
=BURsUhBh+ σ 2BBh,根据特征值由大到小的顺序对特征值对应的特征向量排序,取排序后的前P个特征向量生成微弱信号子空间U' s, 用剩余的特征向量生成噪声子空间U' n。由于经过修正投影变换后,强干扰被阻塞,从而消除了它在协方差矩阵中的影响。然后,再对接收矩阵做特征值分解,获得微弱信号子空间U' s和噪声子空间U' n。此时,U' s只与微弱信号有关,于是,U' n只与微弱信号方向的阵列流型矢量正交,利用空间谱函
数就可以估计出微弱信号的波达方向(D0A),空间谱函数为M
表不微弱信号的导向矢量,Θ表不微弱信号的方位角。实施例I. 一维线阵下上述方法的实现及性能对比实验I仿真实现假设阵列中各阵元是各向同性的,噪声为相互独立的零均值高斯白噪声,且与信号不相关,采用16根阵元组成的均匀等距线型阵列,其间距d为期望信号中心频率对应的半波长。假定空间有5个远场窄带信号入射到阵列,其中包括3个强干扰和2个弱信号,其中弱信号的方位角分别为-30°,0°,和20°,两个强干扰的方位角分别为-60°,和50°,信噪比SNR=OdB,干噪比JNR=40dB,阵元数M=16,快拍数300。由图I可以看出,当干扰比信号强40dB时,常规MUSIC方法已经很难估计出有用的D0A,而本发明却能很好的抑制强干扰信号,并且准确估计出有用信号的D0A。实验2干扰个数同估计精度的关系仍以均匀等距线性阵列为信号模型,阵元数M=16,快拍数300,阵元间距为半波长,三个弱信号方位角分别为-30°,0°和20°,干噪比JNR=40dB,信噪比SNR从-20dB到20dB,当强干扰个数为I个时,其入射角度为-60° ;当强干扰个数为2个时,入射角度为-60°和50°,当强干扰个数为3个时,入射角度-60° ,50°和30°。每次仿真运行300次 Monte-Carlo 实验。由图2可以看出,在干扰功率大于信号功率40dB时,本发明依旧能够很好的抑制干扰并准确估计出弱信号,并且与干扰个数无关,同时不会牺牲有效阵元数量。因此很有效的解决了传统MUSIC算法在干扰功率较大时无法有效估计弱信号的缺陷,克服了干扰阻塞法只能用于多阵元、干扰源个数比较少3)的情况(文献5)。
实验3与现有其它算法的性能比较三种方法(扩充噪声子空间法、干扰阻塞法、修正投影阻塞法)在相同条件下(存在三个弱信号两个强干扰)的估计性能比较。阵元数M=16,快拍数300,阵元间距为半波长,三个信号源来波方向分别为_30°,
O。,20。,干噪比JNR=40dB,信噪比SNR从-20dB到20dB,两个干扰角度为-60°,50。,噪声是均值为O方差为I的高斯白噪声,每次仿真运行300次Monte-Carlo实验。由图3 (a)可以看出,修正投影阻塞法估计成功的信噪比要求(_6dB)比干扰阻塞法(_3dB)低,与噪声扩充法相当。图3(b)中可以看出,由于干扰阻塞法要求干扰角度精确已知,故在低SNR情况下估计偏差较 �。谑导使こ逃τ弥校罅谢岽嬖谙辔晃蟛睿扇抛枞ㄔ诖嬖谡罅邢辔晃蟛钍辈饨蔷仁艿降挠跋齑笥诹硗饬街址椒ǎ缤�3 (c)所示。实验4阵元数与估计精度的关系快拍数300,阵元间距为半波长,三个信号源来波方向分别为-30°,0° ,20°,干噪比JNR=40dB,信噪比SNR从_20dB到20dB,两个干扰角度为-60°,50°,噪声是均值为O方差为I的高斯白噪声,阵元数M从6到20,每次仿真运行300次Monte-Carlo实验。由图4可以看出,当阵元数较少时,本发明的性能估计角度精度更高,误差更�。虼烁锰氐阍诠こ逃τ弥杏凶胖匾南质狄庖�。2. 二维任意阵型的实现及性能分析本发明适用于各种二维阵型(面阵、十字阵、L阵、Y阵、V阵等),为简述,只以Y阵为例作以说明。实验5Y阵仿真实现假定空间有5个远场窄带信号入射到阵列,其中包括3个强干扰和2微弱个信号,3个微弱信号的方位角和俯仰角分别为⑷M)=W,80°) ,(^,^)=(90^,40°),(^3^3)=(120°,65°),2个干扰信号的方位角和俯仰角分别为馬,)=(6(^30°),(^2,^.2)=(160ο,10°),阵元间距为半波长,信噪比为SNR=OdB,干噪比JNR=40dB,噪声是均值为O方差为I的高斯白噪声,阵元数为M = 25,快拍数为300,每次仿真运行300次Monte-Carlo 实验。由图5可以看出,修正投影阻塞法有效抑制干扰,实现了对二维微弱信号的角度估计。实验6 二维不同阵型性能对比为了说明各阵型对本发明的影响不大,可以适用于任意二维阵型,现以面阵、Y阵、十字阵为例说明,同时便于工程应用时对于不同阵型的选择。假定面阵、Y阵、十字阵均为均匀分布的25阵元,空间有5个远场窄带信号入射到阵列,其中包括3个强干扰和2微弱个信号,3个微弱信号的方位角和俯仰角分别为(沒丨肩)=(30'80。),⑷界)=(90。,40。) ’⑷界)=(120。.65。),2个干扰信号的方位角和俯仰角分别为(士,%)=(60°,30°),(巧2,炉,2)=(160°,10°),阵元间距为半波长,信噪比SNR从_20dB到20dB,干噪比JNR=40dB,噪声是均值为O方差为I的高斯白噪声,快拍数为300,每次仿真运行 300 次 Monte-Carlo 实验。从图6可以看出,本发明在不同二维阵型上得以实现,与阵型无关,当信噪比在OdB以上时,可以准确估计出微弱信号。
本发明的关键点I.构建用于任意阵型的阻塞矩阵,构建方法结合了奇异值分解和修正的正交投影阻塞的方法。2.对传统的正交投影法进行修正,可用于干扰角度未知的情况。3.该方法与噪声子空间扩充法相比,因其在对阻塞矩阵输出信号进行角度估计时可采取各种先进的DOA估计算法,故更为灵活多变。本发明的效果本发明针对强干扰背景下微弱信号角度估计进行研究,提出了一种可用于任意阵型条件下有效估计微弱信号的来波方向的方法。该方法无需精确已知干扰角度,适用于任 意二维阵型,特别是在存在阵列误差的情况下估计性能依然良好。修正投影阻塞法与干扰阻塞法相比,省去了因不同阵型带来构建不同阻塞矩阵的麻烦,而且阻塞干扰的同时并不损失自由度。与传统的噪声子空间扩充法相比,在低信噪比情况下,其测角精度更高。目前常用的微弱信号DOA估计的方法虽然在一定程度上可以有效估计并检测出微弱的期望信号,但都还不够完善,会出现适用范围有限、强弱信号角度相距限制、允许误差范围小、先验知识精度要求高、抑制干扰噪声的同时削弱信号等问题,都对探究一种新的微弱信号DOA估计方法提出更高要求;并且,以上研究大多是基于一维均匀线阵的讨论,少有涉及二维或多维以及其他阵型(如平面阵、圆阵、Y阵、L阵、十字阵等),而这一方面的研究其实更加符合实际环境也更有针对性,如特定环境或特定平台时的阵列结构设置、特定阵列结构时的最优DOA算法(文献10)等,并且一维检测估计的结果只有方位角没有俯仰角,这就需要通过二维或更高维度来得到更丰富更准确的信息。因此,基于任意阵型的微弱信号DOA估计方法的研究有着极其重要的意义。
权利要求
1.一种强干扰背景下的任意阵型微弱信号源角度估计方法,其特征在于包括以下步骤 1)对阵列接收信号的协方差矩阵进行特征分解得M个特征值以及与特征值分别对应的特征向量,所述阵列接收信号包括P个弱信号、q个强干扰以及噪声;根据特征值由大到小的顺序对特征值对应的特征向量进行排序; 2)经过步骤I)后,用前q个特征向量生成强干扰子空间,用第q+Ι到第q+p个特征向量生成微弱信号子空间,用第q+ρ+Ι到第M个特征向量生成噪声子空间; 3)构造与强干扰子空间正交的修正投影阻塞矩阵B,利用修正投影阻塞矩阵B对阵列接收信号进行修正投影变换,经过修正投影变换后再对阵列接收信号的协方差矩阵进行特征分解,获得新的微弱信号子空间和噪声子空间; 4)经过步骤3)后,利用空间谱函数估计微弱信号的波达方向。
2.根据权利要求I所述一种强干扰背景下的任意阵型微弱信号源角度估计方法,其特征在于所述步骤I)的具体方法为 以M元等间距排列的均匀线性阵列为例,假设阵列接收到P个方位角分别来自Θ 17θ2,...,θρ的远场独立微弱信号,假设阵列接收到q个方位角分别是S1, δ2,...,Sq的强干扰,则t时刻阵列接收信号表示为X(t)=Aps(t)+Aqj (t)+n(t), Ap=[a( Θ a( Θ 2),…,a(0p)],Aq=Ea(S1), a(S4),…,a(Sq)],a( Θ)为对应第i个微弱信号的导向矢量,i =1,···,ρ,a(5k)为对应第k个强干扰的导向矢量,k=l,-,q;s(t)为微弱信号的复包络矢量,j(t)为强干扰的复包络矢量;n(t)为阵列的高斯白噪声矢量; 对阵列接收信号的协方差矩阵进行特征分解,表示为Rx=E[XH(t)X(t)]=UHAU,A表示特征值A1的对角矩阵,U表示特征向量U1的矩阵,1=1,2,…,M; 对Λ内的特征值由大到小排序,即令λ1+1 < Μ,根据特征值由大到小的顺序对特征值对应的特征向量U1进行排序,得U= (U1, U2, ···, uq, Uq+1,Uq+2,··· j Uq+pi Uq+p+lJ Uq+p+2, ···
3.根据权利要求2所述一种强干扰背景下的任意阵型微弱信号源角度估计方法,其特征在于所述步骤2)的具体方法为 微弱信号子空间记为us, Us=Span (uq+1, uq+2,. . .,uq+p),噪声子空间记为Un,Un=span (uq+p+1, uq+p+2,. . . , uM),噪声子空间与微弱信号导向矢量正交,强干扰子空间记为Uj,Uj — sp£in (Ui,U2,. . .,Up) ο
4.根据权利要求3所述一种强干扰背景下的任意阵型微弱信号源角度估计方法,其特征在于所述步骤3)的具体方法为 构造与强干扰子空间正交的修正投影阻塞矩阵B,B=I-Uj (UjHUjr1U/, I表示MXM维单位矩阵,利用修正投影阻塞矩阵B对阵列接收信号进行预处理,得到信号Y(t),Y(t)=BX(t),再对信号Y(t)的协方差矩阵进行特征分解,根据特征值由大到小的顺序对特征值对应的特征向量排序,用排序后的前P个特征向量生成新的微弱信号子空间U' s,用剩余的特征向量生成新的噪声子空间U' n。
5.根据权利要求4所述一种强干扰背景下的任意阵型微弱信号源角度估计方法,其特征在于所述空间谱函数为
全文摘要
本发明针对强干扰背景下微弱信号角度估计进行研究,提出了一种强干扰背景下的任意阵型微弱信号源角度估计方法——修正投影阻塞法。该方法无需精确已知干扰角度,无阵型限制,任意阵型均适用,即使在存在阵列误差的情况下估计性能依然良好。该方法与干扰阻塞法相比,省去了因不同阵型带来构建不同阻塞矩阵的麻烦,而且阻塞干扰的同时并不损失自由度。与传统的噪声子空间扩充法对比,在低信噪比情况下,其测角精度更高。
文档编号G01S3/14GK102830386SQ20121032124
公开日2012年12月19日 申请日期2012年9月3日 优先权日2012年9月3日
发明者王纯, 徐婷婷, 董惠 申请人:西安建筑科技大学

  • 专利名称:基于表底值的线损信息分段检测方法技术领域:本发明涉及一种线损信息检测方法,尤其是涉及一种基于电表的表底值的线损信息分段检测方法。背景技术:目前馈线线损计算多采用软件计算的方式,依靠GPRS采集供售电侧的电度量数据,然后通过计算供售
  • 专利名称:一种中压开关柜的超声波放电检测装置的制作方法技术领域:本实用新型属于中压智能开关柜领域,尤其涉及用于智能电网中的中压智能开关柜的超声波放电检测装置。背景技术:智能开关柜是智能电站的一个重要组成部分,除具有传统开关柜的基本功能外,还
  • 专利名称:一种110kV 变电站GIS 快速打极性方法技术领域:本发明属于变电站验收调试技术领域,涉及一种GIS快速打极性方法,尤其是一种IlOkV变电站GIS快速打极性方法。背景技术:变电站安装的无论任何电力设备只要有TA、TV都要判断出
  • 专利名称::和移动设备相关的指定位置的导航信息的显示方法和装置的制作方法技术领域::本发明涉及位置服务领域,更具体地说,涉及一种和移动设备相关的指定位置的导航信息的显示方法和装置。背景技术::仪表盘是车辆中不可或缺的部件,通常用于反映车辆的
  • 专利名称:一种整套白车身焊点失效检测设备的制作方法技术领域:本发明涉及工程测试技术领域,尤其涉及一种整套白车身焊点失效检测设备。背景技术:在汽车制造工业过程中,汽车制造水平主要体现在两个方面,一个是外观质量水平,一个是汽车本身的力学性能。在
  • 专利名称:防爆电机接线盒水压试验装置的制作方法技术领域:本实用新型涉及防爆电机接线盒,尤其涉及防爆电机接线盒水压试验装置。背景技术:防爆电机接线盒水压试验装置,安装在防爆电机接线盒外,主要起密封作用,用于安装后防爆电机接线盒的水压试验。常规
山东亚星游戏官网机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12
【网站地图】【sitemap】