专利名称:分析和识别制造零件中的缺陷的系统及方法
技术领域:
一般来讲,本发明涉及制造和检测系统,更具体来讲,涉及用于分析和识别制造零件中的瑕疵或缺陷的系统和方法。
背景技术:
用于制造零件的无损评估(NDE)技术和过程正朝着数据捕获、图像检测、审查和存档方面的全数字基础发展。这些检测的主要目的是识别零件中的缺陷或瑕疵。检测能够根据检测到的缺陷的数量及严重性来判定是否对零件进行接受、修理、返工或丢弃。数字检测器的灵敏度和动态范围已经允许检测和定位以前通过胶片射线照相无法检测的缺陷。工业检测中多个图像检测的快速处理能力以及源和检测器的精确设置已经实现在零件表面横向以10微米的精度定位多个缺陷。
传统的缺陷检测系统不能以自动、精确且可再现的方式把射线照片上标识的缺陷坐标转换为实际的物理零件。相反,这类系统要求二维可视图像与三维零件的人工叠加,这由于完全依赖操作者的判断而极易出错。在从不同参考点进行多次检测的复杂零件的情况下,这种影响更为严重。
希望能够使数字图像上的定位指示向物理部分的转换自动化,并且通过结合了设计、制造、检测、维护及返工阶段的全数字框架来进行这种操作。
发明内容
简言之,在本发明的一个方面,一种用于识别被检测零件中的缺陷的系统和方法包括生成该零件的三维表示,这种三维表示包括对应于零件上不同位置的三维空间坐标,并且使三维空间坐标与被检测零件的对应位置对齐。生成被检测零件的图像,以及从生成图像中标识被检测零件中的缺陷。缺陷的位置与相应的三维空间坐标相关,以及控制某个装置利用相应三维空间坐标的信息在缺陷位置上对被检测零件执行操作。
通过以下结合附图对优选实施例的详细说明,本发明的其它特征、方面和优点将会非常明显。
图1是符合本发明的图像形成设备的结构图。
图2是符合本发明、用于分析和识别制造零件中的缺陷的过程的流程图。
图3是符合本发明的坐标转换过程的流程图。
图4是符合本发明的避免碰撞过程的流程图。
具体实施例方式
图1是符合本发明的自动零件分析系统的框图。如图1所示,该系统包括系统控制单元10、检测器控制单元20以及操作控制单元30。显示器15连接到系统控制单元10。检测器25和源30连接到检测器控制单元20。操作工具45连接到操作控制单元50。该系统还包括支撑零件40的平台35。
系统控制单元10可以实现为工作站,如PC或服务器。系统控制单元10最好包括CPU、主存储器、ROM、存储装置以及通信接口,它们都经由总线连接在一起。CPU可以实现为单微处理器或者实现为多处理系统的多处理器。主存储器最好采用RAM和小型高速缓存来实现。ROM是非易失性存储器,并且可以实现为例如EPROM或NVRAM。存储装置可以是硬盘驱动器或者其它任何类型的非易失性可写存储器。
用于系统控制单元10的通信接口提供连接到检测器控制单元20、平台35和操作控制单元50的双向数据通信。这些元件可以通过直线连接或无线链接直接连接到系统控制单元10或者例如通过服务器间接连接到系统控制单元10。在任何这种实现中,通信接口发送和接收电、电磁或光信号,这些信号携带表示不同类型信息的数字数据流,在连接的元件之间进行收发。
检测器控制单元20可包括工作站,通过与系统控制单元10相同的方式实现。检测器控制单元20还可包括微控制器。检测器控制单元20控制检测器25和源30的定位及操作。用于控制检测器25和源30的定位及操作的信号可通过检测器控制单元20上的用户的指示或者经由从系统控制单元10所发送的信号来提供。
对于特定的旋转位置和轴向高度,零件40最初设置在平台35的中央、在对齐位置上或在等效的对齐位置上或者对齐坐标上。零件40以下列方式放置零件模型的三维空间坐标被映射到被检测零件40的相应位置,包括旋转定向映射。例如可通过把零件40上的基准标志与平台35上的参考标志对齐进行定位。也可以让零件40本身与扫描零件40上的基准标志的激光对齐,并自动旋转和转换模型,以便把被检测零件40与三维模型对齐。定位使零件40能够以相同定向被取下和放回原位以进行后续处理,并且提供一种机制以获得零件模型(下面进行描述)与被检测零件40之间的明确相关性。在检测的坐标系与分析系统中的零件模型的映射实现零件40的数字模型与检测器25和源30所生成的实际零件40的数字图像数据之间的数据合成。这实现检测、分析、注释和返工过程的流线化。
实现检测器25和源30以生成零件40的二维(2D)图像。检测器25和源30可配置成产生例如X光图像、超声图像、涡流图像或红外图像。虽然表示为独立元件,但检测器25和源30可实现为单个元件,取决于要执行的成像类型。
在检测器25和源30产生图像之前,检测器控制单元20对它们进行定位,以便从特定有利位置生成零件40的图像。可通过送往检测器控制单元20以标识把检测器25和源30定位在在什么位置的输入信号来进行定位。或者,检测器25和源30可人工定位。当检测器25和源30位于指定位置时,对零件40生成图像,以及表示该图像的二维数字数据经由检测器控制单元20提供给系统控制单元10。除了提供图像数据之外,检测器控制单元20还可向系统控制单元10提供表示生成图像时检测器25和源30的位置的位置数据。系统控制单元10可在显示器15上显示生成图像。显示器15可实现为例如CRT、等离子或TFT监视器。
除了定位检测器25和源30以生成零件40的图像之外,平台35还可调整为改变零件40相对于检测器25和源30的位置。平台35的位置控制可通过从系统控制单元10所提供的信号来控制,或者平台35可人工定位。平台35可通过多种不同方式来移动零件40,这些方式包括例如绕平台35的中心轴旋转零件40或者沿垂直轴上或下移动零件40。与检测器25和源30一样,平台35的位置信息可提供到系统控制单元10。在检测器25、源30和平台35的位置信息之间,系统控制单元10具有足够的数据在生成图像中确定零件40的准确定向。
通过在显示器15上显示的零件40的图像,用户可分析和检测该图像,以便确定在图像所示的零件的部分是否存在任何缺陷或受关注特征。缺陷可能是例如不完全焊接、焊接中熔合不足、夹杂物、砂眼、溶蚀区、裂缝或铆钉、螺钉或其它可能损害零件40的结构完整性或强度的成分。缺陷部分取决于零件40的类型。零件40可以是装置或机器的多种不同元件中的任一种。例如,零件40可以是喷气式引擎的外壳或汽缸、风车叶片、铸件、铸造电路板或者其它任何元件,检测器25为此所生成的图像可有助于识别需要归档、检验和/或校正的缺陷。
如果用户识别到零件40中的缺陷,用户可直接在显示器15上指明缺陷的位置,例如通过定点设备或者使用户能够标识图像中缺陷的准确位置的其它位置选择装置。图像中的缺陷的位置对应于像素坐标,像素坐标可转换为对其生成图像的零件40上的实际位置。把像素坐标转换为零件40的缺陷的实际位置的能力使用户能够在缺陷位置上对零件40执行操作。
根据缺陷的类型,用户可指导对零件40执行操作。操作可以是例如标记零件中缺陷的位置、修理缺陷、为缺陷着色、磨削缺陷或者可根据精确定位缺陷的能力和/或以自动方式执行的其它功能。
可在操作控制单元50的控制下,由操作工具45来执行操作。操作控制单元50可包括工作站,通过与系统控制单元10相同的方式实现,以及还可包括微控制器。操作控制单元50响应来自系统控制单元10的信号来控制操作工具45在缺陷位置上对零件40执行操作。操作工具45根据要执行的操作类型,可具有各种可变配置。例如,操作工具45可具有标记工具、着色工具、磨削工具、修理工具或用于执行特定操作的其它某种工具部分。此外,根据零件40在平台35上的位置信息以及用户标识为缺陷位置的像素坐标,操作控制单元50能够把操作工具45精确地指引到零件40上的缺陷位置,并在缺陷位置上执行操作。
图2是符合本发明、用于分析和识别制造零件中的缺陷的过程的流程图。结合图1的自动零件分析系统来描述图2的过程。本领域的技术人员应该理解,图1的系统的配置和实现只是执行图2的过程的示范。还应该理解,其它系统配置和实现对于执行图2的过程也是可行的。
如图2所示,用户首先创建所制造的零件40的CAD图像(步骤202)。可利用能够精确地表示零件40的任何数量的可用CAD应用程序来创建CAD图像。还可以利用具有与CAD应用程序相似或等效功能的绘图应用程序。绘图应用程序可在系统控制单元上或者在用户能够准备绘图的工作站或PC上实现。如上所述,零件40可以是例如喷气式引擎的外壳或汽缸、风车叶片、铸件、电路板或者其它任何元件,检测器25为此所生成的图像可有助于识别需要归档和/或校正的缺陷。为了准备零件40的完整表示,CAD或绘图应用程序可包括来自各种有利位置的多个制图或图像。
然后,CAD图像被变换为零件40的三维(3D)表示(步骤204)。零件40的三维表示包括与包含零件40的暴露面在内的零件40的不同位置对应的一系列三维空间坐标。CAD应用程序本身最好是包括用于把CAD图像变换为三维表示的变换函数。例如,CAD应用程序可把CAD图像变换为STL格式,即一种众所周知的三维格式。到三维表示的变换最好被进行到符合预期比例的分辨率,以便定位零件40上的缺陷。除STL以外的其它三维格式也是可选的。
包含零件40的对应三维空间坐标的三维表示可以存储在存储器、如硬盘驱动器或非易失型存储器中供以后参考。存储器可以在系统控制部分10中实现,或者在系统控制部分10可存取的某个位置中实现。三维表示坐标设置为匹配平台35上的零件对齐坐标,使得三维表示的三维空间坐标匹配实际零件40的对应位置。
通过零件40的三维表示被生成、存储以及与被检测的零件40的位置对齐,可生成被检测零件40的二维数字图像(步骤206)。为了生成二维数字图像,用户可通过系统控制单元10控制检测器控制单元20和平台35,把零件40、检测器25以及源30设置到特定位置,以便以特定定向生成二维数字图像。更具体来讲,用户可在系统控制单元10上输入指令,用于生成零件40的特定定向的图像,它们由检测器控制单元20和平台35进行解释,从而正确地定位检测器25、源30和零件40。也能够让用户人工定位这些组件。
例如,可生成一个以上图像,以便表示零件40的各种定向和视图。为了以下说明,仅描述一个二维图像的分析。但是,应该理解,用于分析和应用所述一个二维图像的过程适用于所生成的零件40的各二维图像。如上所述,二维图像可以是例如X光图像、超声图像、涡流图像或红外图像。
零件40的二维图像以及足以确定零件40在图像中的定向和位置的位置信息被提供给系统控制单元10,系统控制单元10在显示器15上显示该图像(步骤208)。用户可检测和分析所显示图像,从而识别零件40中的任何缺陷(步骤210)。为了设定已标识缺陷的位置,用户可通过定点设备,把指针、光标或图标移动到缺陷位置,并点击那个位置将其标记为缺陷。还能够让显示器15对类似触摸屏的触摸进行响应,其中用户利用例如用于PDA的触摸元件来标记缺陷位置。缺陷位置对应于图像的特定像素坐标。这个像素坐标可用来标识零件40上的缺陷的具体物理位置。
除了标记零件40上的缺陷位置之外,用户还可在缺陷位置上标识要执行的特定操作(步骤212)。例如,用户可选择让操作工具45标记零件40上的缺陷位置,对缺陷位置着色,在缺陷位置上执行磨削操作,修理缺陷或者其它操作。所选的特定操作可取决于缺陷类型、其严重性、缺陷的实际位置以及操作工具的功能。用户可例如从显示器15上所显示的可能操作的菜单中选择要执行哪个操作。
为了在零件40的缺陷位置执行操作,进行到对应于零件40的实际物理位置的三维空间坐标的变换以识别在图像上标识的缺陷位置(步骤214)。该变换可包括进行一系列旋转以及从图像上所标识的缺陷位置到对应于零件40的实际物理位置的三维空间坐标的转换。变换可由系统控制单元10执行。例如,系统控制单元10可包括处理单元,该处理单元配置成根据对应的像素坐标、检测器25、传感器30和零件40的位置信息、从实际零件40的成像分别创建的零件40的三维表示,把已标识缺陷位置转换成零件40上的实际物理位置。
图3是符合本发明的坐标转换过程的流程图。图3的过程还提供关于如何把已标识缺陷位置转换成零件40上的缺陷的实际物理位置的详细情况。如图3所示,用户首先在所选图像上选择缺陷位置(步骤302)。对缺陷位置的选择根据上述步骤210进行。
响应对缺陷位置的选择,标识像素坐标(步骤304)。缺陷位置对应于图像的特定像素坐标。这个像素坐标可用来标识零件40上的缺陷的具体物理位置。像素坐标可表示为图像中的特定像素的行和列值。
然后,已标识像素坐标被转换成对应的检测器坐标(步骤306)。检测器坐标对应于检测器25上的特定位置。检测器坐标可表示为检测器25上相对于检测器25的中心的特定位置。例如,检测器25可定义为处于全局Y-Z平面,以及检测器25的中心可定义为Y-Z平面的原点,X方向是从检测器25的原点延伸的法线。在此定义中,检测器坐标对应于Y-Z平面中的特定Y-Z坐标。可作为与原点的距离(如英寸)而不是作为像素来检测Y-Z坐标。
可根据检测器坐标来确定零件40的三维空间坐标(步骤308)。零件40的三维空间坐标对应于正检测的实际零件40上的缺陷位置。利用检测器坐标,可根据检测器25的位置、源30的位置、零件40在由检测器25进行成像时的位置、以及从零件40的CAD表示所产生的零件40的三维表示,来确定三维空间坐标。除了利用位置信息和三维表示之外,零件40和三维表示还可包括可识别标志,以便帮助使三维表示与零件40对齐,以及确保所确定的三维空间坐标更精确地对应于零件40上的缺陷位置。实际零件40上的缺陷的坐标位于连接已经被标记的检测器25的像素与源30的线上。此线对应于视线矢量,下面会更详细地描述。
回到图3,已经确定对应于零件40上的缺陷的特定位置的三维空间坐标之后,控制操作工具45在零件40的缺陷位置上执行标识操作(步骤216)。系统控制单元10通过标识要执行的操作的信息和三维空间坐标向操作控制单元50发送信号。对这些信号进行响应,操作控制单元45在操作控制单元50的控制下对零件40上的缺陷的实际位置执行标识操作。如上所述,该操作可以例如在缺陷位置上设置可识别标志、修理缺陷、对缺陷着色、对它进行磨削或者可对零件40执行符合操作工具45的功能的其它某种操作。
根据零件40的形状,操作工具45可能需要调整它接近零件40以便在缺陷位置上执行操作的方式。图4是符合本发明的避免碰撞过程的流程图。避免碰撞过程是用于查找让操作工具45接近零件40表面的安全路径的迭代过程。
如图4所示,首先确定交叉点(步骤402)。交叉点对应于确定为零件40上的缺陷的实际位置的三维空间坐标。根据图2的过程确定此三维空间坐标。根据交叉点,设置接近矢量(步骤404)。接近矢量最初可设置成对应于表面上的任何矢量。例如,它可设置成交叉点上的表面法线。初始接近矢量用作标识某个矢量的初次尝试,让操作工具45接近零件40的缺陷位置而没有撞击或碰撞零件40的其它某个部分。
在设置初始接近矢量之后,进行检查以确定在余隙区域内是否存在零件40的任何三维空间坐标(步骤406)。余隙区域对应于环绕让操作工具45到达缺陷位置而没有受到零件40的另一部分阻挡所需的交叉点法线的最小空间数量。余隙区域被指定为任意形状、如圆柱体的三维体积。构成该体积,以及在此体积中执行零件40任何三维空间坐标的查找。三维体积、如圆柱体的大小对应于将在缺陷位置附近操作的操作工具45的部分的大小。
在余隙区域中进行搜索之后,确定在余隙区域中是否存在零件40的三维空间坐标其中之一(步骤408)。如果不存在,则接受接近矢量的当前设定(步骤412)。然后,接受的接近矢量可用来使操作工具45到达缺陷位置,并执行适当操作。
但是,如果在余隙区域存在零件40的一个或多个三维空间坐标,则调整接近矢量(步骤410)。余隙区域中存在的各三维空间坐标对应于当操作工具45接近缺陷位置时可能导致与其碰撞的故障点。计算并存储故障点在极向和方位向的定向以便以后使用。作为调整接近矢量的初次尝试,确定视线矢量。地点线矢量对应于检测器25与零件表面上的交叉点之间的无障碍线性路径。由于为了射线照相和红外线,曝光被设置为使源30、检测器25以及图像中受关注区域之间的材料数量为最少,因此这种地点线矢量通常避开可能导致故障的点。在把接近矢量调整到对应于视线矢量之后,再次执行步骤406和408以确定在余隙区域中是否存在任何零件坐标,这是相对于视线矢量重新计算的。如果没有发现任何碰撞点,则接受视线矢量作为操作工具45的安全通路。
如果利用视线矢量作为接近矢量在余隙区域中发现零件坐标,则再次调整接近矢量。首先,相对于环绕初始表面法线或者视线矢量的交叉点计算余隙区域中各坐标的角定向。定向由极角(□)和方位角(□)来规定。对处于余隙区域内的全部坐标的方位分布进行分析。选择最接近对应于方位角(□)的余角,该余角是相对可能导致碰撞的坐标在方位上旋转180度的方位角(□)。接近矢量(即表面法线或视线矢量)在极(□)向上被旋转某个小角度、如20度,然后在方位向上被旋转到处于余隙区域内的坐标。已经旋转接近矢量之后,重复步骤406和408,其中根据已旋转接近矢量重新计算余隙区域。如果在余隙区域中没有任何零件坐标,则接受已旋转接近矢量。如果仍然存在零件坐标,则通过改变极角和方位角其中之一或者两者来尝试调整接近矢量,直到余隙区域中不存在任何零件坐标。最后,如果无法确定任何安全通路,则向用户报告错误。
本发明的优选实施例的以上描述是为了说明和描述而提供的。它不是详尽的说明也不是将本发明限制在所公开的精确形式上,根据上述理论的各种修改和变更都是可行的,或者可以从本发明的实践中获得。选择并描述了这些实施例,以便说明本发明的原理,以及作为实际应用,使本领域的技术人员能够在各种实施例中以及通过适合所考虑的特定应用的各种修改来运用本发明。本发明的范围由本文所附的权利要求书及其等效物定义。
权利要求
1.一种用于识别被检测零件中的缺陷的方法,包括生成所述零件的三维表示,所述三维表示包括对应于所述零件上的不同位置的三维坐标(204);使所述三维空间坐标与被检测零件的对应位置对齐(204);生成所述被检测零件的图像(206);从所述生成图像识别所述被检测零件的缺陷(210);把所述缺陷的位置与对应的三维空间坐标相关(214);控制装置利用所述对应三维空间坐标的信息在所述缺陷位置上对所述被检测零件执行操作(216)。
2.如权利要求1所述的方法,其特征在于还包括在显示装置上显示所述生成图像(208);以及响应所述显示装置上的已标识位置而接收所述缺陷位置的指示(210)。
3.如权利要求1所述的方法,其特征在于还包括接收所述装置要对所述被检测零件执行哪种操作的指示(212),其中所述装置对所述被检测零件执行的所述操作对应于所述接收指示,所述操作为标记和修理其中之一。
4.如权利要求1所述的方法,其特征在于还包括设置初始接近矢量,让所述装置接触所述被检测零件并对其执行所述操作(404);确定在所述初始接近矢量附近的余隙区域中是否存在所述被检测零件的任何表面点(406,408);以及如果在所述余隙区域中不存在任何表面点,则接受所述初始接近矢量作为所述接近矢量,用于把所述装置移动到所述被检测零件(412)。
5.如权利要求4所述的方法,其特征在于所述识别步骤还包括如果在所述余隙区域中存在至少一个表面点,则调整所述初始接近矢量(410);确定在所述已调整接近矢量附近的余隙区域中是否存在所述被检测零件的任何表面点(406,408);以及如果在所述余隙区域中不存在任何表面点,则接受所述已调整接近矢量作为所述接近矢量,用于把所述装置移动到所述被检测零件(412)。
6.一种用于识别被检测零件中的缺陷的零件分析系统,包括存储所述零件(40)的三维表示的存储单元,所述三维表示包括对应于所述零件(40)上的不同位置的三维空间坐标;生成所述被检测零件(40)的图像的成像装置(20,25,30);连接到所述成像装置(20,25,30)和所述存储单元的系统控制单元(10),所述系统控制单元(10)包括处理器和存储器,所述存储器包含由所述处理器运行的多个指令,所述多个指令配置成使所述三维空间坐标与所述被检测零件的对应位置对齐(204),接收来自所述成像装置的所述生成图像(206),接收标识所述被检测零件中的缺陷的指示(210),以及把所述缺陷的位置与所述零件的所述三维表示中的对应三维空间坐标相关(214);连接到所述系统控制单元(10)的操作工具(45),它根据所述系统控制单元(10)所关联的所述对应三维空间坐标在所述缺陷位置上对所述被检测零件(40)执行操作。
7.如权利要求6所述的零件分析系统,其特征在于还包括显示所述生成图像的显示装置(15);以及响应用户输入而在所述显示装置(15)上标识所述缺陷的位置的缺陷标识单元(10)。
8.如权利要求6所述的零件分析系统,其特征在于,所述系统控制单元(10)的所述存储器包括指令,所述指令配置成接收所述操作工具(45)要对所述被检测零件(40)执行哪种操作的指示(212),其中所述操作工具(45)对所述被检测零件执行的所述操作对应于所述所接收指示,以及所述操作为标记和修理其中之一。
9.如权利要求6所述的零件分析系统,其特征在于,所述系统控制单元(10)的所述存储器还包括配置成进行以下操作的指令设置初始接近矢量,让所述操作工具(45)接触所述被检测零件(40)并对其执行所述操作(404);确定在所述初始接近矢量附近的余隙区域中是否存在所述被检测零件(40)的任何表面点(406,408);以及如果在所述余隙区域中不存在任何表面点,则接受所述初始接近矢量作为所述接近矢量,用于把所述操作工具(45)移动到所述被检测零件(40)(412)。
10.如权利要求9所述的零件分析系统,其特征在于,所述系统控制单元(10)的所述存储器还包括配置成进行以下操作的指令如果在所述余隙区域中存在至少一个表面点,则调整所述初始接近矢量(410);确定在所述已调整接近矢量附近的余隙区域中是否存在所述被检测零件(40)的任何表面点(406,408);以及如果在所述余隙区域中不存在任何表面点,则接受所述已调整接近矢量作为所述接近矢量,用于把所述操作工具(45)移动到所述被检测零件(40)(412)。
全文摘要
一种用于识别被检测零件中的缺陷的系统和方法包括生成该零件的三维表示,这种三维表示包括对应于零件上不同位置的三维空间坐标,并且使三维空间坐标与被检测零件的对应位置对齐。生成被检测零件的图像,以及从生成图像中识别被检测零件中的缺陷。缺陷的位置与相应的三维空间坐标相关,以及控制某个装置利用相应三维空间坐标的信息在缺陷位置上对被检测零件执行操作。
文档编号G01N21/88GK1576829SQ20041006363
公开日2005年2月9日 申请日期2004年7月9日 优先权日2003年7月9日
发明者S·T·尚卡拉帕, G·A·莫尔, M·S·迪内斯, B·W·拉休克, R·C·麦克法兰, E·L·迪克松 申请人:通用电气公司