רÀûÃû³Æ£ºÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°Ë®ÏµØÐθ¨Öúµ¼º½Ñо¿ÁìÓò£¬ÌرðÉæ¼°Ò»ÖÖ´æÔڷǸß˹ÔëÉùµÄ·ÇÏßÐÔϵͳÏ£¬Í¨¹ýÒ»Öֶַκ¯Êý±Æ½üµ¼º½Ëæ»ú΢·ÖÄ£ÐÍÈõ½âµÄÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨¡£
±³¾°¼¼Êõ£º
¾«È·µ¼º½¼¼ÊõÊÇÈ·±£Ë®ÏÂDZÆ÷ÓÐЧÀûÓúͰ²È«»ØÊյĹؼü¼¼ÊõÖ®Ò»¡£Ä¿Ç°£¬Ë®ÏµØÐθ¨Öúµ¼º½ÏµÍ³´ó¶à²ÉÓÃÒԹߵ¼ºÍ¶àÆÕÀռƳÌÒÇ×éºÏΪÖ÷£¬¸¨ÒÔÈçGPS¡¢ÖØÁ¦¡¢µØÐÎµÈÆäËüУÕýÐÅÏ¢µÄ×ۺϵ¼º½¼¼Êõ¡£Â˲¨Êǽ«ÐźÅÖÐÌØ¶¨²¨¶ÎƵÂÊÂ˳ýµÄ²Ù×÷£¬ÊÇÒÖÖÆºÍ·ÀÖ¹¸ÉÈŵÄÒ»ÏîÖØÒª´ëÊ©£¬µ«ÊÇÓÉÓÚˮϹ¤×÷»·¾³·Ç³£¸´ÔÓ¡¢´æÔÚÖî¶à²»È·¶¨ÐÔÒòËØ£¬Ê¹µÃ´«Í³Â˲¨·½·¨µÄÓ¦ÓÃÊܵ½¼«´óÏÞÖÆ¡£Ë®ÏµØÐθ¨Öúµ¼º½¹ý³Ì±¾ÖÊÉÏÊÇÒ»¸ö×îÓŹÀ¼ÆÎÊÌâ¡£µË×ÔÁ¢ÏÈÉú°Ñ×îÓŹÀ¼ÆÀíÂÛÒª½â¾öµÄÎÊÌâ·ÖΪÈýÀà1¡¢Ä£ÐͲÎÊýµÄ¹À¼ÆÎÊÌ⣻2¡¢Ê±¼äÐòÁС¢ÐźŻò״̬µÄ¹À¼ÆÎÊÌ⣻3¡¢ ÐÅÏ¢ÈںϹÀ¼ÆÎÊÌâ¡£µØÐ½ÎÊÌâÊôÓÚµÚ¶þÀàÎÊÌâ¡£Çó½â·½·¨µÄ·¢Õ¹Óë×îÓŹÀ¼ÆÀíÂ۵ķ¢Õ¹ÊÇÒ»Öµġ£×îÓŹÀ¼Æ¾ÀúÁË×îС¶þ³Ë·¨¡¢KalmanÂ˲¨ºÍ±´Ò¶Ë¹¹À¼ÆÂ˲¨Èý¸ö·¢Õ¹½×¶Î(1)×îÓŹÀ¼Æ×î»ù±¾µÄ·½·¨ÊÇ×îС¶þ³Ë·¨£¬ÕâÀà¹À¼Æ·½·¨Ö»ÐèÒª½¨Á¢²âÁ¿Ä£ÐÍ£¬ ËüµÄ»ù±¾ÔÀíÊÇʵ¼Ê¹Û²âÖµÓëÄ£ÐͼÆËãÖµµÄÎó²îƽ·½ºÍ×îС£¬ÆäÖ»±£Ö¤Á¿²âÎó²îµÄ·½²î×îС£¬¶Ô²âÁ¿Êý¾Ý½øÐеÄÊÇÅú´¦Àí£¬²»ÀûÓÚʵʱ´¦Àí¡£(2)¿¨¶ûÂü(Kalman)Â˲¨·½·¨£¬»ùÓÚ״̬¿Õ¼äÀíÂÛºÍÉäÓ°ÀíÂÛ½â¾ö״̬¹À¼ÆÎÊÌâ¡£¿¨¶ûÂüÂ˲¨²ÉÓõÝÍÆ¼ÆË㣬ÊÊÒ˼ÆËã»úʵÏÖ¡£¶ÔÓÚ¾ßÓиß˹·Ö²¼ÔëÉùµÄÏßÐÔϵͳ£¬¿ÉÒԵõ½ÏµÍ³×´Ì¬µÄµÝÍÆ×îС¾ù·½²î¹À¼Æ¡£¿¨¶ûÂüÂ˲¨Òѹ㷺ӦÓÃÓÚ¸÷ÖÖÁìÓò£¬Èçµ¼º½ÖƵ¼¡¢ Ä¿±ê¸ú×Ù¡¢ÐźŴ¦Àí¡¢¿ØÖƵȡ£¿¨¶ûÂü×î³õÌá³öµÄÂ˲¨ÀíÂÛÖ»ÊÊÓÃÓÚÏßÐÔϵͳ£¬BucyµÈÈËÌá³öÁËÀ©Õ¹¿¨¶ûÂüÂË(Extended Kalman Filtering£¬¼ò³ÆEKF)£¬½«¿¨¶ûÂüÂ˲¨ÀíÂÛ½øÒ»²½Ó¦Óõ½·ÇÏßÐÔÁìÓò(¿É²Î¿¼ÎÄÏ×R S Bucy£¬K D Senne. Digital synthesis of nonlinear f liters [J], Automatica, 1971, 7 =287-298)¡£EKFµÄ»ù±¾Ë¼ÏëÊǽ«·ÇÏßÐÔϵͳ½øÐÐÏßÐÔ»¯£¬ È»ºó½øÐп¨¶ûÂüÂ˲¨£¬Òò´ËEKFÊÇÒ»ÖÖ´ÎÓÅÂ˲¨¡£Óë¶Ô·ÇÏßÐÔº¯ÊýÏßÐÔ»¯Ïà±È£¬¶Ô״̬·ûºÏ¸ß˹·Ö²¼µÄ½üËÆÒª¼òµ¥µÄ¶à£¬»ùÓÚÕâÖÖ˼Ï룬JulierµÈÈËÌá³öÎÞ¼£¿¨¶ûÂüÂ˲¨(Unscented Kalman Filter,UKF)(¿É²Î¿¼ÎÄÏ×S. J. Julier, J. K. Uhlmann. non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, NM, USA, 1997,4 :2369-2373)£¬ÈÏΪ״̬µÄ¸ÅÂÊÃܶȷֲ¼¿Éͨ¹ýÄܲ¶»ñÃܶȺ¯ÊýµÄ¾ùÖµºÍ·½²îµÄsigmaµãÀ´ÃèÊö£¬Í¨¹ýUT (Unscented Transction)±ä»»»ñµÃsigmaµãºÍËüÃǵÄȨֵ£¬¶øºó°Ñͨ¹ýϵͳµÄ״̬·½³Ì´«µÝµÄsigmaµã¼ÓȨÇóºÍ£¬µÃµ½ºóÑé¾ùÖµºÍз½²î¡£¾ßÌå¿É²Î¿¼ÎÄÏ×Tine L,Herman B, Joris D S.ÓÚ2004 Äê·¢±íµÄÎÄÕÂKalman Filters for nonlinear systems :a comparison of performance¡£ÏÖÓеÄKalmanÂ˲¨¡¢EKFºÍUKFÂ˲¨½öÊÊÓÃÓÚ¾ßÓиß˹·Ö²¼ÔëÉùµÄϵͳ£¬¶¼ÒÔÇóµÃϵͳ״̬¸ÅÂÊ·Ö²¼µÄ¶þ½×¾ØÎªÄ¿µÄ£¬¹À¼Æ¾«¶È²»ÊǺܸߡ£²¢ÇÒÔÚ¾ßÌåµÄʵ¼ÊÓ¦ÓÃÖУ¬ÏµÍ³
5״̬¸ÅÂʵÄʵ¼Ê·Ö²¼Ò²¿ÉÄܲ»ÊÇÕý̬·Ö²¼£¬²ÉÓÃÕâÀàÂ˲¨·½·¨¶¼ÊÇͨ¹ýÇóµÃÃܶȺ¯ÊýµÄ¾ùÖµºÍ·½²îÀ´ÃèÊö״̬µÄ¸ÅÂÊÃܶȷֲ¼£¬È»¶øÏµÍ³×´Ì¬»ùÓÚÁ¿²âÐÅÏ¢µÄºóÑé¸ÅÂÊÃܶÈ×îÄÜ´ú±í״̬µÄʵ¼Ê·Ö²¼£¬ËùÒÔÖ±½Ó¶Ôϵͳ״̬¸ÅÂÊÃܶȺ¯Êý½øÐÐÇó½â¸üÄÜÃ÷ȷϵͳ״̬¸÷ÖÖ¿ÉÄÜÐÔ¡£(3)»ùÓÚ±´Ò¶Ë¹(Bayesian)¹À¼ÆµÄÂ˲¨·½·¨£¬Çó½âµÄÊÇϵͳ״̬»ùÓÚÁ¿²âÐÅÏ¢µÄºóÑé¸ÅÂÊÃܶȡ£Ê¹Óñ´Ò¶Ë¹¹À¼ÆµÄÄѵãÊÇÇó½â״̬µÄÏÈÑé¸ÅÂÊÃܶȺ¯ÊýºÍ½øÐлý·ÖÔËËã¡£ Ö»ÓкÜÉÙÊýµÄϵͳ¿ÉÒÔÇóµÃ±´Ò¶Ë¹¹À¼ÆµÄ×îÓŽ⣬ÈçÏßÐÔ¸ß˹ϵͳ¿ÉÓÉKalmanÂ˲¨½øÐÐÇó½â£¬´ó¶àÊýϵͳÊDzÉÓýüËÆ»ò±Æ½üµÄ·½Ê½½øÐÐÇó½â£¬ÀýÈçÁ£×ÓÂ˲¨(Partical Filter)·½·¨ÊDzÉÓÃÒ»×é´øÓÐȨֵµÄÁ£×Ó(Ëæ»úÑù±¾)ͨ¹ý״̬´«µÝ·½³ÌÀ´±Æ½ü״̬µÄ¸ÅÂÊÃܶȣ¬½«»ý·ÖÔËËãת»¯ÎªÓÐÏÞÑù±¾µãµÄ¼ÓȨºÍ¡£Èý´ÎÑùÌõ²åÖµËã·¨Ò²ÊôÓÚ»ùÓÚ±´Ò¶Ë¹¹À¼ÆµÄ·¶³ë¡£ÎÄÏ×¹«¿ªºÅΪCN1012^630 ÓÚ2008-7-23¹«¿ªµÄÖйú·¢Ã÷רÀûÉêÇë¡¶»ùÓÚÈý´ÎÑùÌõº¯ÊýµÄ²åÖµ·½·¨¡·£¬¸ÃÎÄÏ×ÖÐÓ¦ÓÃÈý´ÎÑùÌõ²åÖµË㷨ʵÏÖÁËÒ»ÖÖ±ßÔµ×ÔÊÊÓ¦´¦ÀíµÄͼÏñËõ·Å·½·¨£¬ÌṩÁËÒ»ÖÖ²åÖµºóͼÏñ¹â»¬£¬ÂÖÀªÇåÎúµÄ»ùÓÚÈý´ÎÑùÌõº¯ÊýµÄ×ÔÊÊÓ¦²åÖµ·½·¨£¬Ëù²ÉÓõļ¼Êõ·½°¸ÊÇ£¬Ïȼì²â²åÖµµãµÄλÖÃ״̬£¬È»ºó¶Ô´¦ÓÚ²»Í¬µÄλÖÃ״̬µÄ²åÖµµãÔÙ²ÉÓò»Í¬µÄ´¦Àí·½·¨½øÐвåÖµÔËËã¡£ ½ü¼¸Ä꣬Á£×ÓÂ˲¨Ëã·¨ÔÚ±´Ò¶Ë¹¹À¼Æ·½ÃæÓ¦Ó÷dz£¹ã·º£¬ÎÄÏ×ÕŹ²Ô¸£¬ÕÔÖÒÔÚ2006Äê6Ô·¢±íµÄ¡¶Á£×ÓÂ˲¨¼°ÆäÔÚµ¼º½ÏµÍ³ÖеÄÓ¦ÓÃ×ÛÊö¡·£¬¸ÃÎÄÏ×ÖÐÌá³öÁË´«Í³µÄÀ©Õ¹¿¨¶ûÂüÂ˲¨·½·¨ÒªÇó¶Ô·ÇÏßÐÔϵͳ½üËÆÏßÐÔ»¯£¬ÓпÉÄÜ»áÒýÈë½Ï´óµÄÄ£ÐÍÎó²î£¬µ«Ó¦ÓÃÁ£×ÓÂ˲¨¿É½â¾öÕâÒ»ÎÊÌ⣬Á£×ÓÂ˲¨Ëã·¨¿ÉÒÔÖ±½ÓÓ¦ÓÃÓÚÔϵͳµÄ·ÇÏßÐÔÄ£Ð͵±ÖУ¬²¢ÇÒ²»Ð迼ÂÇϵͳÔëÉùºÍÁ¿²âÔëÉùÊÇ·ñΪ¸ß˹°×ÔëÉù£¬¶¼Äܵõ½ºÜºÃµÄÂ˲¨Ð§¹û¡£¸ÃÎÄÏ×ÖнéÉÜÁËÁ£×ÓÂ˲¨µÄÀíÂÛ»ù´¡-±´Ò¶Ë¹¹À¼Æ¼°¾ßÌåµÄʵÏÖ·½Ê½-ÃÉÌØ¿¨ÂÞ·½·¨£»Ö¸³öÁ£×ÓÂ˲¨´æÔÚµÄÍË»¯ÎÊÌ⣬²¢´Ó¼õСÍË»¯ÏÖÏóÈëÊÖ½«ÖØÒªÐÔ²ÉÑùºÍÔÙ²ÉÑù·½·¨ÒýÈëµ½Ëã·¨Ö®ÖУ»×îºó²ûÊöÁËÁ£×ÓÂ˲¨ÔÚµ¼º½ÏµÍ³ÖеÄһЩӦÓá£È»¶øÕë¶ÔÁ£×ÓÂ˲¨µÄÍË»¯ÎÊÌ⣬ʹÆäÄÑÒÔ±£³Ö½Ï¸ßµÄÊÕÁ²ÐԺ͹⻬ÐÔ£¬ÈçºÎ¸üºÃµÄ¸ú×Ùϵͳ״̬µÄ±ä»¯£¬Ìá¸ßÆä·Ö²¼¾«¶È£¬ÊÇĿǰˮϵØÐ½Ëæ»ú΢·ÖÄ£ÐÍÇó½âÁìÓòÉÏØ½´ý½â¾öµÄÎÊÌ⣬µ«ÎÄÏ×3Öв¢Ã»Óиø³ö½â¾öµÄ·½·¨ºÍÆôʾ¡£
·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷µÄÄ¿µÄÊÇΪÁ˽â¾öÒÔˮϵØÐ½ÏµÍ³Îª±³¾°£¬½¨Á¢µÄµ¼º½Ëæ»ú΢·ÖÄ£Ð͵ÄÈõ½â·½³ÌµÄÈõ½âºÜÄÑÇóµÃµÄÎÊÌ⣬Ìá³öÁËÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬²ÉÓÃÒ»ÖÖÈý´ÎÑùÌõ²åÖµº¯ÊýÀ´·Ö¶Î±Æ½üÆä½â¿ÉµÃµ½×´Ì¬µÄÏÈÑé¸ÅÂÊÃܶȺ¯Êý£¬ÔÙÓɱ´Ò¶Ë¹¹«Ê½µÃµ½×´Ì¬µÄºóÑé¸ÅÂÊÃܶȺ¯Êý£¬Í¬Ê±Ò²½â¾öÁ˹¹ÔìÈý´ÎÑùÌõ²åÖµÌõ¼þµÄÄѵãÎÊÌ⣬ʵÏÖ¸üºÃµÄ¸ú×Ùϵͳ״̬µÄ±ä»¯£¬¾ßÓкܸߵĹÀ¼Æ¾«¶È¡¢ÊÕÁ²ËٶȺÍÊÕÁ²¹â»¬ÐÔ¡£±¾·¢Ã÷Ò»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬Ê×ÏÈΪˮϵ¼º½½¨Á¢×´Ì¬Î¢·ÖÓëÁ¿²âÀëÉ¢·½³Ì£¬²¢µÃµ½Ò»¸öÓÃÀ´±íʾDZÆ÷Ô˶¯×´Ì¬µÄÈõ½â·½³Ì£¬È»ºóͨ¹ýÒÔϲ½Öè¶ÔÈõ½â·½³Ì½øÐбƽüÀ´¶ÔDZÆ÷µÄÔ˶¯×´Ì¬½øÐйÀ¼Æ²½ÖèÒ»¡¢½«³õʼʱ¿ÌµÄÌõ¼þ¸ÅÂÊÃܶÈ×÷ΪÕý̬·Ö²¼£¬Ñ¡¶¨Í¶Ó°Çø¼ä[a£¬b]ºÍ·Ö¶ÎÇø¼äa = < X1 < & <Ø< ¦É = b£¬¹¹ÔìÈý´ÎÑùÌõ²åÖµº¯ÊýPi(X)Pi (¦Ö) = Mm (& ¦¶) +¦¬, (X _ 1) + A1 (¦Ö - ¦Ö.,, )+ij,,x e [¦Ö^, Xi]£¬i = 1,2, ...£¬¦Ç
6/2, 6/2,
6
ÆäÖУ¬Ai, Bi*¹ØÓÚʱ¼äµÄ»ý·Ö³£Êý£¬ÏµÊýMi = p¡¨ (Xi)5P" (Xi)ΪÈý´ÎÑùÌõ²åÖµº¯ÊýP(X)ÔÚ½ÚµãXi´¦µÄ¶þ½×µ¼Êý£¬¦Ç±íʾ·Ö¶ÎÇø¼äµÄ¸öÊý£¬Îª´óÓÚ0µÄÕûÊý£¬hi±íʾµÚi¸ö·Ö¶ÎÇø¼äµÄ³¤¶È£¬²½Öè¶þ¡¢Í¨¹ýÉÏÒ»¸öʱ¿ÌµÄºóÑé¸ÅÂÊÃܶȺ¯ÊýµÃµ½²åÖµµãµÄÖµ£¬ÔÙÀûÓÃǰÏò¿Â¶ûΏçÂå·ò·½³Ì¹¹Ô쵱ǰʱ¿ÌµÄÈý´ÎÑùÌõ²åÖµº¯ÊýµÄ²åÖµµã£¬°Ñ²åÖµµã´úÈëʽ(1)ÖУ¬µÃµ½ÓÃMi, Mi^1°Ñ±íʾµÄ³£ÊýAi, Bi,´Ó¶øµÃµ½Ö»º¬ÏÈÑéϵÊýMi, Mi^1µÄÏÈÑé¸ÅÂÊÃܶȺ¯Êý£»²½ÖèÈý¡¢ÀûÓÃÈý´ÎÑùÌõ²åÖµº¯ÊýÔÚÿ¸ö½Úµã´¦µÄÒ»½×Á¬Ðøµ¼ÊýºÍ±ß½çÌõ¼þÁгö n+1¸ö·½³Ì×飬ÓÃ×·¸Ï·¨Çó³öÏÈÑéϵÊýMi,½«ÏÈÑéϵÊýMi´úÈëʽ(1)µÃµ½ÏÈÑé¸ÅÂÊÃܶȺ¯Êý£»²½ÖèËÄ¡¢¸ù¾Ýµ±Ç°Ê±¿ÌµÄÁ¿²âÐÅϢȷ¶¨ËÆÈ»¸ÅÂÊÃܶȣ¬°ÑÏÈÑé¸ÅÂÊÃܶȺÍËÆÈ»¸ÅÂÊÃܶȴøÈ뱴Ҷ˹¹«Ê½£¬µÃµ½µ±Ç°Ç±Æ÷Ô˶¯×´Ì¬µÄºóÑé¸ÅÂÊÃܶȣ»²½ÖèÎå¡¢ÅжϷÂÕæÊ±¼äÊÇ·ñÒѵ½£¬Èô·ÂÕæÊ±¼äδµ½£¬×ª²½Öè¶þ¼ÌÐøÖ´ÐУ»Èô·ÂÕæÊ±¼äµ½´ï£¬ÔòÊä³ö·ÂÕæ½á¹û£¬½áÊø±¾´Î·ÂÕæ¡£±¾·¢Ã÷µÄÓŵãÓë»ý¼«Ð§¹ûÔÚÓÚ(1)±¾·¢Ã÷Â˲¨·½·¨ÔÚ±£Ö¤Í¼Ïñƽ»¬ÐԵĻù´¡ÉÏ£¬Ôö¼Ó±ßÔµÈñ¶È£¬Í¬Ê±ÓÐЧµÄÏû³ýÁËÔÈý´ÎÑùÌõ²åÖµº¯Êý²åÖµ·½·¨ÖУ¬ÓÉÓÚͼÏñ±ßÔµÁ½²à·ÇÁ¬Ðø×´Ì¬ÏñËØ»¥Ïà¸ÉÈŵ¼ÖµıßÔµÁ½²àÐéÏñµÄÎÊÌ⣻( ±¾·¢Ã÷Â˲¨·½·¨³ä·ÖÀûÓÃÁËÈý´ÎÑùÌõ²åÖµµÄÌØÐÔ£¬Í¨¹ýǰÏò¿Â¶ûΏçÂå·ò·½³Ì¹¹ÔìÈý´ÎÑùÌõ²åÖµÌõ¼þ£¬ÔÚº¯Êý¿Õ¼äÖжÔ״̬µÄÏÈÑé¸ÅÂÊÃܶȺ¯Êý½øÐзֶαƽü£¬ÔÙͨ¹ý±´Ò¶Ë¹¹«Ê½µÃµ½ÏµÍ³×´Ì¬µÄºóÑé¸ÅÂÊÃܶȣ¬¾ßÓкܸߵĹÀ¼Æ¾«¶È¡¢ÊÕÁ²ËٶȺÍÊÕÁ²¹â»¬ÐÔ£¬¿ÉÒԺܺõĸú×Ùϵͳ״̬µÄ±ä»¯¡£
ͼ1ÊDZ¾·¢Ã÷Â˲¨·½·¨µÄÁ÷³ÌʾÒâͼ£»Í¼2ÖУ¬(a)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ1ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£» (b)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ2ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£»(c)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ31ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£»(d)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ32ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£»(e)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ33ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£»(f)ÊDZ¾·¢Ã÷Â˲¨·½·¨ÔÚµÚ50ÃëʱµÄDZÆ÷Ô˶¯×´Ì¬µÄ¸ÅÂÊÃܶÈʾÒâͼ£»Í¼3AÊÇʱ¼ä¼ä¸ôΪ0. 1Ãëʱ£¬±¾·¢Ã÷ʵʩÀýÖвÉÓñ¾·¢Ã÷·½·¨Óë²ÉÓÃÁ£×ÓÂ˲¨·½·¨½øÐзÂÕæµÃµ½µÄλÖþùÖµµÄ¶Ô±ÈʾÒâͼ£»Í¼:3BÊÇʱ¼ä¼ä¸ôΪ0. 1Ãëʱ£¬±¾·¢Ã÷ʵʩÀýÖвÉÓñ¾·¢Ã÷·½·¨Óë²ÉÓÃÁ£×ÓÂ˲¨·½·¨½øÐзÂÕæµÃµ½µÄλÖñê×¼²îµÄ¶Ô±ÈʾÒâͼ£»Í¼4AÊÇʱ¼ä¼ä¸ôΪ0. 01Ãëʱ£¬±¾·¢Ã÷ʵʩÀýÖвÉÓñ¾·¢Ã÷·½·¨Óë²ÉÓÃÁ£×ÓÂ˲¨·½·¨½øÐзÂÕæµÃµ½µÄλÖþùÖµµÄ¶Ô±ÈʾÒâͼ£»Í¼4BÊÇʱ¼ä¼ä¸ôΪ0. 01Ãëʱ£¬±¾·¢Ã÷ʵʩÀýÖвÉÓñ¾·¢Ã÷·½·¨Óë²ÉÓÃÁ£×ÓÂ˲¨·½·¨½øÐзÂÕæµÃµ½µÄλÖñê×¼²îµÄ¶Ô±ÈʾÒâͼ£»Í¼5AÊDZ¾·¢Ã÷ʵʩÀýÖÐDZÆ÷Ô˶¯×´Ì¬¾ù·½¸ùÎó²îµÄ¶Ô±ÈʾÒâͼ£»Í¼5BÊDZ¾·¢Ã÷ʵʩÀýÖÐDZÆ÷Ô˶¯×´Ì¬µÄ±ê×¼²îµÄ¶Ô±ÈʾÒâͼ¡£
¾ßÌåʵʩ·½Ê½
ÏÂÃæ½«½áºÏ¸½Í¼ºÍʵʩÀý¶Ô±¾·¢Ã÷×÷½øÒ»²½µÄÏêϸ˵Ã÷¡£±¾·¢Ã÷Ò»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬Ä¿µÄÊÇÀûÓûùÓÚ±´Ò¶Ë¹¹À¼ÆµÄÂ˲¨·½·¨µÄÓŵ㣬ÌṩһÖÖÈý´ÎÑùÌõ²åÖµ·Ö¶Î±Æ½üµ¼º½Ëæ»ú΢·ÖÄ£ÐÍÈõ½âµÄ·½·¨£¬´Ó¶øÓÐЧµØ±£Ö¤ÁËÆä¿ÉÒÔ¸üºÃµÄ¸ú×Ùϵͳ״̬µÄ±ä»¯£¬±¾·¢Ã÷µÄ·ÇÏßÐÔÂ˲¨·½·¨¾ßÓкܸߵĹÀ¼Æ¾«¶È¡¢ÊÕÁ²ËٶȺÍÊÕÁ²¹â»¬ÐÔ¡£ÒÔˮϵØÐθ¨Öúµ¼º½ÏµÍ³Îª±³¾°£¬Ç±Æ÷µÄÔ˶¯×´Ì¬¿ÉÓÃËæ»ú¹ý³ÌX (t)±íʾ£¬¼ÙÉè¶ÔÓÚʱ¼äte
=Q(t)dt£¬0¢Å
qÊÇmά°×ÔëÉù¹ý³Ì£¬E[ekekT] = R(k)£¬R{k)eW^¡£¦Â tÓëqÏ໥¶ÀÁ¢£¬tk±íʾ²ÉÑùʱ¼ä¡£ Q(t)¡¢R(k)·Ö±ð±íʾΪ¹ý³ÌÔëÉùºÍÁ¿²âÔëÉùµÄз½²î£¬¼ò¼Çi = Rk¡£Ëæ»ú΢·Ö·½³ÌµÄ½â×÷ÎªËæ»ú¹ý³Ì£¬¿ÉÒÔ³éÏóµØÓÃÒ»¸ö·ºº¯Xt = J[x0, ¦Â t£¬t]±íʾ¡£ Ëæ»ú΢·Ö·½³ÌÓÐÇ¿½âºÍÈõ½âÁ½ÖÖ£¬½öÓÐһЩÀàÐ͵ÄËæ»ú΢·Ö·½³ÌÓÐÇ¿½âµÄ·â±Õ½â¡£Èõ½âÊÇÁ¬Ðøº¯Êý¿Õ¼äÖеÄÒ»¸ö¸ÅÂÊ£¬ÓÉ×ªÒÆº¯Êý¾ö¶¨£¬Õë¶Ô±¾·¢Ã÷·½·¨£¬Èõ½â¾ÍÊÇÖ¸ÏÂÃæµÃµ½µÄÏÈÑé¸ÅÂÊ¡£ÔÚϵÊý¦Ì (x, t)¡¢¦Ò (¦Ö, t)ºÏÊʵÄÌõ¼þÏ£¬Ç±Æ÷µÄÔ˶¯×´Ì¬µÄÌõ¼þ¸ÅÂÊÃÜ¶È¦Ñ (X£¬ t|zt)Âú×ãǰÏò¿Â¶ûΏçÂå·ò·½³Ì
ȨÀûÒªÇó
1. Ò»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬Ê×ÏÈΪˮϵØÐθ¨Öúµ¼º½ÏµÍ³½¨Á¢×´Ì¬Î¢·ÖÓëÁ¿²âÀëÉ¢·½³Ì£¬²¢µÃµ½Ò»¸öÓÃÀ´±íʾDZÆ÷Ô˶¯×´Ì¬µÄÈõ½â·½³Ì£¬È»ºóͨ¹ýÒÔϲ½Öè¶ÔÈõ½â·½³Ì½øÐбƽüÀ´¶ÔDZÆ÷µÄÔ˶¯×´Ì¬½øÐйÀ¼Æ²½ÖèÒ»¡¢½«³õʼʱ¿ÌµÄÌõ¼þ¸ÅÂÊÃܶÈ×÷ΪÕý̬·Ö²¼£¬Ñ¡¶¨Í¶Ó°Çø¼ä[a£¬b]ºÍ·Ö¶ÎÇø¼äa =X0 < X1 < X2 < ... < Xn = b,¹¹ÔìÈý´ÎÑùÌõ²åÖµº¯ÊýPi (¦Ö)P1 (X) = Mia (¦¶' ¦¶) +¦¬, (¦¶ _ £»¡®') +4 (x- X1,!e [Xi^1, Xi],i = 1,2, ...£¬n (1)6/2 6/2¦ÉIÆäÖУ¬Ai, BiΪ¹ØÓÚʱ¼äµÄ»ý·Ö³£Êý£¬ÏÈÑéϵÊýMi = p" (Xi)jp" (Xi)ΪÈý´ÎÑùÌõ²åÖµº¯ÊýP(X)ÔÚ½ÚµãXi´¦µÄ¶þ½×µ¼Êý£¬¦Ç±íʾ·Ö¶ÎÇø¼äµÄ¸öÊý£¬Îª´óÓÚ0µÄÕûÊý£¬h±íʾµÚi¸ö·Ö¶ÎÇø¼äµÄ³¤¶È£¬²½Öè¶þ¡¢Í¨¹ýÉÏÒ»¸öʱ¿ÌµÄºóÑé¸ÅÂÊÃܶȺ¯ÊýµÃµ½²åÖµµãµÄÖµ£¬ÔÙÀûÓÃǰÏò¿Â¶ûΏçÂå·ò·½³Ì¹¹Ô쵱ǰʱ¿ÌµÄÈý´ÎÑùÌõ²åÖµº¯ÊýµÄ²åÖµµã£¬°Ñ²åÖµµã´úÈëʽ(1)ÖУ¬µÃµ½ÓÃMi, Mi^1±íʾµÄ»ý·Ö³£ÊýAi, Bi,´Ó¶øµÃµ½Ö»º¬ÏÈÑéϵÊýµÄÏÈÑé¸ÅÂÊÃܶȺ¯Êý£»²½ÖèÈý¡¢ÀûÓÃÈý´ÎÑùÌõ²åÖµº¯ÊýÔÚÿ¸ö½Úµã´¦µÄÒ»½×Á¬Ðøµ¼ÊýºÍ±ß½çÌõ¼þÁгön+1¸ö·½³Ì×飬ÓÃ×·¸Ï·¨Çó³öÏÈÑéϵÊýMi,½«ÏÈÑéϵÊýMi´úÈëʽ(1)ºó£¬µÃµ½µ±Ç°Ê±¿ÌµÄÏÈÑé¸ÅÂÊÃܶȣ»²½ÖèËÄ¡¢¸ù¾Ýµ±Ç°Ê±¿ÌµÄÁ¿²âÐÅϢȷ¶¨ËÆÈ»¸ÅÂÊÃܶȣ¬°ÑÏÈÑé¸ÅÂÊÃܶȺÍËÆÈ»¸ÅÂÊÃܶȴøÈ뱴Ҷ˹¹«Ê½£¬µÃµ½µ±Ç°Ê±¿ÌµÄDZÆ÷Ô˶¯×´Ì¬µÄºóÑé¸ÅÂÊÃܶȣ»²½ÖèÎå¡¢ÅжϷÂÕæÊ±¼äÊÇ·ñÒѵ½£¬Èô·ÂÕæÊ±¼äδµ½£¬×ª²½Öè¶þ¼ÌÐøÖ´ÐУ»Èô·ÂÕæÊ±¼äµ½´ï£¬ÔòÊä³ö·ÂÕæ½á¹û£¬½áÊø±¾´Î·ÂÕæ¡£
2.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬²½ÖèÒ»ÖÐËùÊöµÄÌõ¼þ¸ÅÂÊÃܶÈÂú×ãǰÏò¿Â¶ûΏçÂå·ò·½³ÌLrydp_l^d2(g{x,t)Q{t)gT(x,t)-p) ^d(f(x,t)-p)¢Ædt 2SxrSxs̨ OXrÆäÖУ¬P±íʾÌõ¼þ¸ÅÂÊÃܶȣ¬t±íʾʱ¼ä£¬f (X£¬t)±íʾDZÆ÷Ô˶¯×´Ì¬±ä»¯ÓëDZÆ÷Ô˶¯×´Ì¬Ö®¼äµÄ¹ØÏµ£¬g(x£¬t)±íʾÔëÉùÀ©É¢£¬Q(t)Ϊ¹ý³ÌÔëÉùµÄз½²î£¬m±íʾDZÆ÷Ô˶¯×´Ì¬¿Õ¼äµÄάÊý£¬xrÓëXs±íʾÔÚmά¿Õ¼äÖЦÖÏòÁ¿µÄ×ø±ê¡£
3.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½Öè¶þ¾ßÌåÊÇÊ×ÏÈ£¬ÔÚ½ÚµãXi¡¢Xi-!´¦µÄÈý´ÎÑùÌõ²åÖµº¯ÊýP (Xi)¡¢P(Xh)Âú×ãǰÏò¿Â¶ûΏçÂå·ò·½³Ì£¬¼ò¦¡(¦Ö£¬0¡°£¬Ã®¡±g¡¯/M"£¬ÓÐd{gQgT¡ö p) _d(gQgT) d{p)d(f-p) d(f) | d(p),( ( -i O SL^ &, 1 JOXs OXs OXsOXr OXr OXrÔòµÃ^{sQ^-p) ^(gQg^) ^ | 2 8{gQg^)d(p) | ^t O2(^) ¢Çdxrdxs SxrSxs dxrdxs dxrdxs
4.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬²½ÖèJ ÖÐËùÊöµÄ¦Ç+1¸ö·½³Ì×飬¾ßÌåÊÇ
5.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½ÖèËľßÌåÊÇÊ×ÏÈ£¬È·¶¨µ±Ç°Ê±¿ÌµÄËÆÈ»¸ÅÂÊÃܶÈP(zk+1/x)Ϊ
6.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬²½ÖèÎåËùÊöµÄ·ÂÕæ½á¹ûÊÇÖ¸²½ÖèËÄÖеõ½µÄDZÆ÷Ô˶¯×´Ì¬µÄºóÑé¸ÅÂÊÃܶȵľùÖµºÍ·½²î
È«ÎÄÕªÒª
±¾·¢Ã÷¹«¿ªÁËÒ»ÖÖÓÃÓÚˮϵ¼º½µÄ·ÇÏßÐÔÂ˲¨·½·¨£¬ÓÃÓÚ´ÓˮϵØÐ½Ëæ»ú΢·ÖÄ£ÐÍÖÐÇóµÃÈõ½â¡£±¾·¢Ã÷ͨ¹ýʹÓÃÁËÈý´ÎÑùÌõ²åÖµº¯ÊýÀ´·Ö¶Î±Æ½üµ¼º½Ëæ»ú΢·ÖÄ£Ð͵ÄÈõ½â¿ÉµÃµ½×´Ì¬µÄÏÈÑé¸ÅÂÊÃܶȺ¯Êý£¬ÆäÖÐÀûÓÃǰÏò¿Â¶ûΏçÂå·ò·½³Ì½â¾öÁ˹¹ÔìÈý´ÎÑùÌõ²åÖµµãµÄÄѵãÎÊÌ⣬ȻºóÔÙÓɱ´Ò¶Ë¹¹«Ê½µÃµ½×´Ì¬µÄºóÑé¸ÅÂÊÃܶȺ¯Êý¡£±¾·¢Ã÷·½·¨³ä·ÖÀûÓÃÁËÈý´ÎÑùÌõ²åÖµ¾ßÓмÆËã¼òµ¥¡¢Îȶ¨ÐԺá¢ÊÕÁ²ÐÔÓб£Ö¤¡¢Ò×ÓÚÔÚ¼ÆËã»úÉÏʵÏÖ²¢ÇÒÄܱ£Ö¤ÕûÌåÇúÏߵĹ⻬ÐÔµÈÌØÐÔÄܸüºÃ¸ú×Ùϵͳ״̬¸÷ÖÖ¿ÉÄÜÐÔ£¬¾ßÓкܸߵĹÀ¼Æ¾«¶È¡¢ÊÕÁ²ËٶȺÍÊÕÁ²¹â»¬ÐÔ£¬¿ÉÒԺܺõĸú×Ùϵͳ״̬µÄ±ä»¯¡£
Îĵµ±àºÅG01C21/00GK102252672SQ20111010895
¹«¿ªÈÕ2011Äê11ÔÂ23ÈÕ ÉêÇëÈÕÆÚ2011Äê4ÔÂ28ÈÕ ÓÅÏÈȨÈÕ2011Äê4ÔÂ28ÈÕ
·¢Ã÷ÕßÁõ³§, ÕÅÕñÐË, Àî¸Õ, ÕÔÓñÐÂ, ³ÂÁ¢¾ê ÉêÇëÈË:¹þ¶û±õ¹¤³Ì´óѧ