רÀûÃû³Æ£ºÒ»ÖÖ»ùÓÚÎüÊÕ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°¹âÆ×¶¨Á¿·ÖÎöÁìÓò£¬Éæ¼°Ò»ÖÖ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎöµÄ·½·¨£¬Ìرð Éæ¼°Ò»ÖÖ»ùÓÚ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌ嶨Á¿·ÖÎö·½·¨¡£
±³¾°¼¼Êõ£º
¹âÆ×·ÖÎö³£ÓÃÓÚ»ìºÏÎïµÄ³É·Ö·ÖÎö£¬Ò²ÊǶà×é·ÖÆøÌåÔÚÏß¶¨Á¿·ÖÎöµÄÖØÒª·½·¨Ö® Ò»¡£ÆøÌå·ÖÎöÉæ¼°µ½¿ÆÑ§Ñо¿¡¢»·¾³±£»¤¡¢É豸µÄ¹ÊÕÏÕï¶Ï¡¢²úÆ·ÖÊÁ¿µÄ¼ì²â¡¢ÌìÈ»ÆøÓëʯÓÍ ¿±Ì½Â¼¾®µÈ¶à¸öÁìÓò£¬ÔÚÕâЩÁìÓòÖУ¬×é·ÖÆøÌåµÄ¶¨Á¿·ÖÎö·¢»Ó×ŷdz£ÖØÒªµÄ×÷Óá£Èç±ä ѹÆ÷µÄ¹ÊÕÏÕï¶Ï·½·¨ÖУ¬ÓÐÒ»ÖÖ¾ÍÊÇͨ¹ý¼ì²â±äѹÆ÷ÓÍÖÐÒÒȲµÈÆøÌåµÄº¬Á¿À´Ê¶±ðµÄ£¬Ìì È»ÆøµÄȼÉÕÖµÊÇͨ¹ý¼ì²âÌìÈ»ÆøÖм×Íé¡¢ÒÒÍéµÈ×é·ÖµÄº¬Á¿À´È·¶¨µÄ¡£ËäÈ»ÆøÌåÎüÊÕ¹âÆ× µÄ¹âÆ×·ÖÎöÊÇÆøÌ嶨Á¿·ÖÎöµÄÒ»ÖÖÖØÒª·½·¨£¬µ«ÕâÖÖ·½·¨»¹´æÔÚһЩûÓнâ¾öµÄÎÊÌ⣬Æä ÖÐÖ®Ò»¾ÍÊÇÓÉÓÚ±»·ÖÎö±³¾°±È½Ï¸´ÔÓ£¬³ýÁËÄ¿±êÆøÖ®Í⣬¿ÉÄÜ»¹´æÔÚijЩδ֪µÄ¸ÉÈÅÆøÌå¡£ ÀýÈ磬¼Ò¾ßÒÔ¼°Îå½ðÆ÷²ÄµÈµÄÖÊÁ¿¼ì²âÖ¸±êÖУ¬ÓÐÒ»ÏîÊǵ¥Î»Ê±¼äÄÚ¼×È©µÄ»Ó·¢Á¿£¬µ«¼Ò¾ß ÒÔ¼°Îå½ðÆ÷²ÄµÈ²úÆ·Ëù»Ó·¢µÄÆøÌåÖУ¬³ýÁ˼×È©Í⣬¿ÉÄÜ»¹ÓÐÒÒÈ©µÈÆäËüÓлú»¯ºÏÎ¶øÇÒ ÆäÖÐÓÐһЩ³É·ÖµÄÎüÊÕ¹âÆ×¿ÉÄÜÓë¼×È©ÎüÊÕ¹âÆ×Óн»µþ¡£ÓÚÊÇ£¬ÈçºÎ¼õСÕâЩ¸ÉÈÅÆøµÄ´æ ÔÚ¶ÔÄ¿±êÆøÌå·ÖÎöµÄÓ°Ï죬¾Í³ÉÁ˶à×é·ÖÆøÌå¹âÆ×¶¨Á¿·ÖÎöµÄÖØÒªÄÚÈÝ¡£ÁíÍ⣬ÔÚ¿ÆÑ§Ñо¿ ÖУ¬È绯ѧ·´Ó¦£¬Ò²¿ÉÒÔͨ¹ý¹âÆ×ÔÚÏß·ÖÎöÀ´Ê¶±ðÊÇ·ñÓÐÐÂÎïÖʵIJúÉú£¬»òÕßÖмä¹ý³ÌÊÇ·ñ ÓÐеÄÎïÖʳɷ֡£
·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷µÄÄ¿µÄÔÚÓÚ£¬ÌṩһÖÖ»ùÓÚÎüÊÕ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌ嶨Á¿·ÖÎö·½·¨£¬ ¸Ã·½·¨ÔÚLambert-Beer¶¨Àí»ù´¡ÉÏ£¬Í¨¹ý¹¹½¨Ò»¸ö³ÆÖ®Îª¹´ÐÍËðʧº¯ÊýµÄº¯Êý£¬²¢²ÉÓö¯ Á¿·¨Éñ¾ÍøÂçѧϰËã·¨À´¶Ô¸÷ÖÖÄ¿±êÆøµÄŨ¶È½øÐÐѧϰ£¬×îÖÕ´ïµ½¼õÐ¡Î´ÖªÆøÌå¶ÔÄ¿±êÆø ¶¨Á¿·ÖÎö´øÀ´µÄ¸ÉÈŵÄÄ¿µÄ¡£ÎªÁËʵÏÖÉÏÊöÈÎÎñ£¬±¾·¢Ã÷²ÉÓÃÈçϼ¼Êõ½â¾ö·½°¸Ò»ÖÖ»ùÓÚÎüÊÕ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨£¬Ê×ÏÈÔ¤¹À¸÷×é·ÖÄ¿±ê ÆøÌåµÄŨ¶È£¬¹À¼Æ¸÷×é·ÖÆøÌåÔÚ¹âÆ×Ëù¸ÐÐËȤµÄ²¨Êý¶Î·¶Î§ÄÚµÄÕÛËãÎü¹âÂÊ£¬»ñµÃ³õÊ¼ÖØ ¹¹¹âÆ×ͼ£»Ñ¡ÔñËù¸ÐÐËȤµÄ²¨Êý¶Î·¶Î§ÄÚµÄÖØ¹¹¹âÆ×ͼÓëʵ¼ÊɨÃèµÃµ½µÄ¹âÆ×ͼ֮²îÎªÖØ ¹¹Æ«²î£¬ÒÔÕâ¸öÆ«²î×÷ΪÊäÈ룬¹¹½¨¹´Ðͺ¯Êý×÷Ϊ¹âÆ×Í¼ÖØ¹¹µÄËðʧº¯Êý£¬²¢²ÉÓÃÉñ¾ÍøÂç ѧϰËã·¨Öе͝Á¿·¨¶ÔÖØ¹¹¹âÆ×½øÐеü´úÔËË㣬ÒÔ¸üÐÂÿÖÖÄ¿±êÆøÌåŨ¶ÈÖµ£¬Ö±µ½ÏàÁÚÁ½ ´Îµü´ú½á¹ûÖУ¬ËùÓÐÄ¿±êÆøÌåŨ¶ÈÖµÖ®¼äµÄÆ«²îСÓÚÔ¤¶¨µÄÈÝÐíÆ«²î£»ËùÊö¹´Ðͺ¯Êý¾ßÓÐÈçÏÂʽÐÎʽf(¡êi) = + ^Mk2E1) _ I)2ʽÖЦŠi = Ui-Vi,±íʾµÚiÌõÆ×Ïßʵ¼Ê¹âÆ×ÖµUiÓëÖØ¹¹¹âÆ×ÖµViÖ®²î£»kp k2³Æ ֮Ϊ¹´ÐÍËðʧº¯ÊýµÄÐÎ״ϵÊý¡£¸÷×é·ÖÆøÌåµÄÕÛËãÎü¹âÂÊÊǸù¾ÝÆäµ±Ç°Å¨¶È¹À¼ÆÖµ»òÔ¤ÉèÖµ£¬ÒÔ¼°ÏàÓ¦µ¥×é·ÖÆøÌåÑù±¾ÆøÌå¹âÆ×ͨ¹ýÇúÏßÄâºÏ·¨À´¹À¼ÆµÄ£»ÇúÏßÄâºÏ·¨¼ÈÊÇ·Ö¶ÎÏßÐÔ»¯¡¢¶àÏîʽ±Æ½ü·¨»ò ÑùÌõ²åÖµ·¨£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ× ͼµÄµÚi¸ö¹âÆ×ÖµViµÄ×ÔÈ»¶ÔÊý³ýÒÔµ¥×é·ÝÆøÌåAjµÄŨ¶ÈCiu£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹â ÂÊ¦Ä Jk) = log (v¡°k))/Caj (k)£¬k = 1£¬2£¬...£¬sʽÖÐlog( ¡¤)±íʾ×ÔÈ»¶ÔÊýÔËË㣬SΪµ¥×é·ÝÆøÌå^µÄÑù±¾ÊýÁ¿£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ× ͼµÄµÚi¸ö¹âÆ×ÖµVi³ýÒÔµ¥×é·ÝÆøÌå^µÄŨ¶È£¬¼´ÎªÄ¿±êÆøKiµÄÕÛËãÎü¹âÂÊ
¦Ä J1 (k) = Vi (k) /Caj (k), k = 1,2,¡£¬SʽÖÐCaj ´óÓÚ Caj (k)£¬ÇÒСÓÚ Caj (k+¦©)¡£Èô²ÉÓöàÏîʽ±Æ½ü·¨¹ÀËãS u£¬ÓÐ
ÓÚÊÇ£¬Èç¹ûµ¥×é·ÝÆøÌå^µÄ¹ÀËãŨ¶ÈΪCiu,Èô²ÉÓ÷ֶÎÏßÐÔ»¯¹ÀËã¦Ä¡ÓÐ ¦Ä ij = ( ¦Ä ¦Ô (k-1) - ¦Ä ¦Ô (k)) (Caj-Caj (k)) / (CAJ (k+1) -Caj (k))
Q
T Aj
s=0
ʽÖÐQáêS-l£¬ÏµÊýbs(s = 1,2, B = inv (HtH) HtC
¡¯£¬Q)ÓÉÏÂʽȷ¶¨
B = [b0£¬b,9¡£¬bQ]T, C"l Caj(I)LCaj Of1 Q¢ÆLCAj(2fM MOM.1 CA](S)LCaj (Sf _
,CAJ(S)]T, H =ËùÊöµü´úÔËËã·½·¨²ÉÓÃÉñ¾ÍøÂçµÄѧϰËã·¨Öе͝Á¿·¨¡¢×îËÙϽµ·¨¡¢ÒÅ´«Ëã·¨ »òÄ£ÄâÍË»ð·¨À´ÊµÏÖ£¬²¢¶ÔÿÖÖÆøÌåŨ¶ÈµÄÔöÁ¿É趨ÁËÉÏÏÞºÍÏÂÏÞ£¬ÒÔ±ÜÃâѧϰÊÕÁ²¹ý³Ì ÖеÄÀ´»ØÌø±ä£¬Ôö¿ìÊÕÁ²ËÙ¶È£»¾ßÌå°üÀ¨ÏÂÁв½Öè(1)Ô¤¹ÀN×é·ÖÆøÌåµÄÄ¿±êÆøH¡¡¢AnµÄŨ¶È·Ö±ðΪCA1¡¢CA2,¡¡¢Can £»Ô¤¹À µÄ·½·¨ÊÇÔ¤ÉèŨ¶ÈÖµ·¨¡¢ÌØÕ÷Æ×ÏßµÄ×îС¶þ³Ë·¨¡¢Ö÷·ÖÁ¿»Ø¹é·¨¡¢¼ÓȨ×îС¶þ³Ë¹À¼Æ·¨»ò·´ ×îС¶þ³Ë¹À¼Æ·¨£»Áî¹âÆ×·ÖÎöµÄM×é±ê¶¨Ñù±¾ÖÐY= [C1 C2¡Cn]±íʾN×é·ÖÆøÌåµÄÄ¿±êÆøµÄÆÚÍû Ũ¶È¾ØÕó£¬E = [E1 E2¡En]±íʾN×é·ÖÆøÌåµÄ²Ð²î¾ØÕó£¬H = [V1 V2¡VJ±íʾËù¸ÐÐËȤ
i2
¡®¡£Àö]£¬Ei ¡ª [Eil Ei2
¦¥ ]£¬i ¡ª 1£¬2£¬
µÄLÌõÆ×ÏßÖµÐγɵľØÕ󣬯äÖÐCi = [Cil C N, Vj = [Vjl Vj2 -VJM]T, j = 1,2,¡£¬L¡£Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò×îС¶þ³Ë·¨¡¢¼ÓȨ×îС¶þ³Ë¹À ¼Æ·¨¿É°´(Ia)ʽ¼ÆËã[CA1,CA2, -,CJ = Iog(V)W(la)¶ÔÓÚ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv (QtQ) QtY,¶ÔÓÚ¼ÓȨ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv (QT AQ) Qt ¦« Y£¬ÆäÖÐinv(¡¤)±íʾÇóÄæÔËË㣬Qij = Iog(Hij), AÊÇÒ»¸öLXLµÄ¼ÓȨ¾ØÕó£»
Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò×îС¶þ³Ë·¨¡¢¼ÓȨ×îС¶þ³Ë¹À ¼Æ·¨¿É°´(Ia)ʽ¼ÆËã[Cai£¬Ca2£¬CJ = Vff (Ic)¶ÔÓÚ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv(HtH)HtY,¶ÔÓÚ¼ÓȨ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv (HT A H) Ht A Y £»(2)°´È¨ÀûÒªÇó3£¬¸ù¾Ý¸÷×é·ÖµÄŨ¶È£¬¼ÆËã¸÷×é·ÖÕÛËãÎü¹âÂÊ¦Ä iJO ¦Ä¡£_±íʾÔÚËù ¸ÐÐËȤ¹âÆ×¶ÎÖеÚiÆ×ÏߵĹâÆ×Öµ¶ÔÓ¦µÄÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ£¬ËüÊÇʵ¼ÊÎü¹âÂÊÓë¹â³Ì µÄ³Ë»ý£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ× ͼµÄµÚi¸ö¹âÆ×ÖµViµÄ×ÔÈ»¶ÔÊý³ýÒÔµ¥×é·ÝÆøÌåA^µÄŨ¶ÈCiu£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹â ÂÊ¦Ä Jj = log (Vi)/Caj (2a)ʽÖÐlog( ¡¤)±íʾ×ÔÈ»¶ÔÊýÔËË㣻Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ× ͼµÄµÚi¸ö¹âÆ×ÖµVi³ýÒÔµ¥×é·ÝÆøÌå^µÄŨ¶È£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ¦Ä Jj = Vi/CAJ (2b)(3)ÔÚ¹âÆ×ͼÖÐËù¸ÐÐËȤµÄ¹âÆ×¶ÎÄÚ£¬»ñµÃ³õÊ¼ÖØ¹¹ÎüÊÕ¹âÆ×ͼÈç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÖØ¹¹¹âÆ×ͼÖеÚi¸ö¹âÆ×Öµ Ϊ
Nv. =exp(-^<5..C^.)(3a)
7=1Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÖØ¹¹¹âÆ×ͼÖеÚi¸ö¹âÆ×Öµ Ϊ
NV. =(3b)
7=1ʽÖÐexp(¡¤)±íʾ×ÔȻָÊýÔËË㣬N±íʾĿ±êÆøÌåµÄÖÖÊý£»(4)Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÁîÖØ¹¹Æ«²îΪ¦Å j = Ui-Vi (4a)Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÁîÖØ¹¹Æ«²îΪ¦Å j = (Ui-Vi) exp (-Vi) (4b)ʽÖÐUi±íʾ¹âÆ×ɨÃèµÃµ½µÄÎüÊÕ¹âÆ×ͼÖеÚi¸ö¹âÆ×Öµ¡£Ñ¡Ôñ¹´Ðͺ¯Êý×÷ΪËð ʧº¯Êýf(CAl,CA2A ,C,w) = |;(^2+(exp(M!)-l)2)(5)
iʽÖÐM±íʾËùÖØ¹¹µÄÎüÊÕ¹âÆ×¶ÎµÄ¹âÆ×Öµ¸öÊý£¬ki¡¢k2³ÆÖ®Îª¹´ÐÍËðʧº¯ÊýµÄÐÎ×´ ϵÊý£»(5)ÓÃÉñ¾ÍøÂçѧϰ·½·¨Öе͝Á¿·¨¶ÔÄ¿±êÆøÌåµÄŨ¶È½øÐеü´úÔËËãCaj (t) = Caj (t-1) - ¦Á (j) [ (1_ ¦Ë ) ¦¤ Caj (t_l) + ¦Ã ¦¤ Caj (t_2) ](6)
ʽÖЦÁ (j)ÎªÆøÌåAjŨ¶È¶¨Á¿·ÖÎöµÄѧϰÂÊ£¬¦ËΪ¶¯Á¿Òò×Ó£¬ÇÒ
Ϊѧϰµü´ú´ÎÊý¡£¶ÔÓÚACAj£¬¿É²ÉÓÃʽ(7)À´¹À¼Æ
ʽÖÐeÊÇÒ»¸ö×㹻СµÄÁ¿£¬¿ÉÈ¡e = 0.01 £»Èç¹û¦¤ Caj > MaxAJ,ÔòÁî ¦¤ Caj = MaxAJ £»Èç¹û ¦¤ Caj < MinAJ,ÔòÁî ¦¤ Caj = MinAJ,Æä ÖÐMaxAjºÍMinAj·Ö±ð±íʾËùÉ趨µÄÆøÌå×é·ÖAjŨ¶ÈµÄÔöÁ¿ÉÏÏÞºÍÏÂÏÞ£¬ÇÒMaxAj > 0,MinAJ < 0 £»(6)Óõü´ú½á¹ûÈ¡´ú¢ÅÖеÄÔ¤¹ÀÖµ£¬ÒÀ´ÎÖØ¸´ÉÏÊö²½Öè(2)¡¢(3)¡¢¢È¡¢(5)£¬Ö±µ½ ÿÖÖÄ¿±êÆøµÄŨ¶ÈÓëÉÏÒ»´Îµü´ú½á¹ûÖ®²îСÓÚÉ趨µÄÈÝÐíÆ«²î¡£¸Ã·½·¨Ê×ÏÈÔ¤¹À¸÷×é·ÖÄ¿±êÆøÌåµÄŨ¶È£¬¹À¼Æ¸÷×é·ÖÆøÌåÔÚ²»Í¬Å¨¶ÈÇé¿öÏÂÔÚ²» ͬ¹âÆ×Êý¾ÝµãµÄÕÛËãÎü¹âÂÊ£¬¼´¸÷×é·ÖÆøÌåÔÚ²»Í¬¹âÆ×Êý¾ÝµãµÄʵ¼ÊÎü¹âÂÊÓë¹â³ÌµÄ³Ë »ý£¬È»ºó¸ù¾ÝLambert-Beer¶¨Àí£¬»ñµÃ³õÊ¼ÖØ¹¹¹âÆ×ͼ£¬Ñ¡ÔñÖØ¹¹¹âÆ×ͼÓëʵ¼ÊɨÃèµÃµ½ µÄ¹âÆ×ͼ֮²îÎªÖØ¹¹Æ«²î£¬¹¹½¨Ò»ÖÖ³ÆÖ®Îª¹´Ðͺ¯Êý×÷Ϊ¹âÆ×Í¼ÖØ¹¹µÄËðʧº¯Êý£¬²¢²ÉÓà Éñ¾ÍøÂçѧϰËã·¨Öе͝Á¿·¨¡¢×îËÙϽµ·¨¡¢ÒÅ´«Ëã·¨¡¢Ä£ÄâÍË»ðËã·¨µÈ¶ÔÖØ¹¹¹âÆ×½øÐеü ´úÔËË㣬ÒÔ¸üÐÂÿÖÖÄ¿±êÆøÌåŨ¶ÈÖµ£¬Ö±µ½¸÷×é·ÖÆøÌåŨ¶ÈÊÕÁ²µ½ÏàÁÚÁ½´Îµü´úÔËËã½á¹û ±ä»¯Ð¡ÓÚËùÉ趨µÄÈÝÐíÆ«²î¡£±¾·¢Ã÷ʵÏֵĶà×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎöËٶȿ졢½á¹û׼ȷ£¬ÌرðÓÐÖúÓÚ¼õС´ý·Ö Îö»ìºÏÆøÖдæÔڵĸÉÈÅÆø¶ÔÄ¿±ê×é·Ö·ÖÎö½á¹ûµÄÓ°Ï죬¿ÉÓÃÓÚʯÓÍ¡¢ÌìÈ»Æø¿±Ì½µÄÆøÂ¼¾®£¬ ²úÆ·ÖÊÁ¿¼ì²éÓë¹ÊÕÏÕï¶Ï¡¢Îå½ð¡¢»¯¹¤¡¢»·¾³±£»¤µÈÁìÓòµÄ¶à×é·ÖÆøÌå¹âÆ×¶¨Á¿·ÖÎöÓ¦Óà ÖС£
ͼ1(a)ÊǼ×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍéÆß×é·ÖÆøÌåŨ¶È·Ö ±ðΪ 6. 09%¦«. 58%,0. 935%,0. 444%,0. 477%,0. 233%ºÍ 0. 234%±ê×¼»ìºÏÆø 400-1400 ²¨Êý¶Î¸µÁ¢Ò¶±ä»»ÖкìÍâÎüÊÕ¹âÆ×ͼ£»Í¼1 (b)ÊÇÒ»ÖÖ»ìºÏÓÍÆøµÄ¸µÁ¢Ò¶±ä»»ÖкìÍâʵ¼ÊÎüÊÕÆ×ͼµÄ400-1400²¨Êý¶Î¡£ ¸Ã»ìºÏÓÍÆøµÄÆøÏàÉ«Æ×·ÖÎö½á¹ûΪ¼×Íé1. 0652%¡¢ÒÒÍé0. 0253%¡¢±ûÍé0.0199%¡¢Òì ¶¡Íé0. 0105%¡¢Õý¶¡Íé0. 0113%¡¢ÒìÎìÍé0. 0041%ºÍÕýÎìÍé 0. 0031% £»Í¼2ÊÇŨ¶È¾ùΪ1 %µÄ¼×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍéÆß×é·Ö ÆøÌåµÄ400-1400²¨Êý¶Î¸µÁ¢Ò¶±ä»»ÖкìÍâÎüÊÕ¹âÆ×ͼ£»Í¼3Êǹ´ÐÍËðʧº¯ÊýµÄÇúÏßͼ£»Í¼4(a)ÊÇͼ1(a)Ëùʾ¹âÆ×ͼ¼°ÏàÓ¦µÄ±Æ½ü¹âÆ×£¬¹âÆ×±Æ½ü·ÖÎö½á¹û·Ö±ðΪ ¼×Íé6. 02%¡¢ÒÒÍé1.62%¡¢±ûÍé0. 95%¡¢Òì¶¡Íé0. 46%¡¢Õý¶¡Íé0. 48%¡¢ÒìÎìÍé
0.24%¡¢ÕýÎìÍé0. 24%¡£Í¼4(b)ͼ1(b)Ëùʾ¹âÆ×ͼ¼°Æä±Æ½ü¹âÆ×ͼ¡£±Æ½ü¹âÆ×ͼ·ÖÎö½á¹û·Ö±ðΪ¼×Íé
1.08%¡¢ÒÒÍé0. 03%¡¢±ûÍé0. 029%¡¢Òì¶¡Íé0. 0085%¡¢Õý¶¡Íé0. 02%¡¢ÒìÎìÍé0. 01%ºÍÕýÎìÍé0. 008% £»
¾ßÌåʵʩÀý·½Ê½ÒÔÏÂÒÔ¼×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍéµÄÖкìÍâÎüÊÕ¹âÆ×¶¨Á¿ ·ÖÎöΪÀý£¬½áºÏʵ¼ÊÒÇɨÃèµÄ¹âÆ×Óë¹âÆ×ÖØ¹¹½á¹ûµÈ¸½Í¼£¬ÒÔ¼°±¾·¢Ã÷µÄÔÀí¶Ô±¾·¢Ã÷µÄ ʵʩ·½Ê½×÷½øÒ»²½µÄÏêϸ˵Ã÷¡£±¾·¢Ã÷ͨ¹ý¹¹½¨Ò»¸ö¹´ÐÍËðʧº¯ÊýP = Ic1 ¦Å 2+ (exp (k2 ¦Å ) -1)2 (1)ʽÖУ¬exp(¡¤)±íʾ×ÔÈ»¶ÔÊýº¯Êý£»¦ÅÊÇ×Ô±äÁ¿£»P±íʾËðʧº¯Êý£»²ÎÊý1^ºÍ1^2¿Ø ÖÆº¯ÊýµÄÇúÏßÐÎ×´¡£Ã÷ÏԵأ¬¸Ãº¯ÊýÖУ¬È¨ÖØÔÚ¹âÆ×͸ÉäÂÊСÓÚÖØ¹¹¹âÆ×ÏàÓ¦²¨Êý͸ÉäÂÊʱ ½ÏС£¬·´Ö®Ôò´ó£¬´Ó¶ø´ïµ½Á˼õС±»·ÖÎö»ìºÏÆøÖдæÔÚµÄÎ´ÖªÆøÌå¶ÔÄ¿±êÆøÌå·ÖÎö½á¹ûµÄÓ°Ïì¡£¾ßÌå°üÀ¨ÏÂÁв½Öè1)Ô¤¹ÀN×é·ÖÆøÌåµÄÄ¿±êÆø¦¡¦Ñ¦¡2¡¢¡¡¢AnµÄŨ¶È·Ö±ðΪCA1¡¢CA2¡¢¡¡¢Can£¬¹À¼ÆµÄ ·½·¨¿ÉÒÔ²ÉÓÃÔ¤ÉèŨ¶ÈÖµ£¬Ò²¿ÉÒÔ²ÉÓÃÌØÕ÷Æ×ÏßµÄ×îС¶þ³Ë·¨¹À¼Æ¡¢¼ÓȨ×îС¶þ³Ë¹À¼Æ·¨¡¢ ·´×îС¶þ³Ë¹À¼Æ·¨µÈ·½·¨ÇóµÃ£»2)¹À¼Æ¸÷Ä¿±êÆøÌåÔÚËù¸ÐÐËȤµÄ¹âÆ×¶Î¸÷×é·ÖÆøÌåÔÚ¸÷×ÔŨ¶ÈÇé¿öϸ÷Êý¾Ýµã µÄÕÛËãÎü¹âÂÊ¦Ä £»3)ÔÚ¹âÆ×ͼÖиÐÐËȤµÄ¹âÆ×¶ÎÄÚ£¬¸ù¾ÝLambert-Beer¶¨Àí£¬ÖØ¹¹¹âÆ×£»4)ÇóÈ¡ÖØ¹¹Æ«²îÓëËðʧº¯ÊýÖµ£»5)ÓÃÉñ¾ÍøÂçѧϰ·½·¨ÖеÄ×îËÙϽµ·¨¡¢¶¯Á¿·¨¡¢ÒÅ´«Ëã·¨¡¢Ä£ÄâÍË»ðËã·¨µÈ¶ÔÄ¿ ±êÆøÌåµÄŨ¶È½øÐеü´úÔËËã¡£Èç¹ûÆøÌåŨ¶ÈÔöÁ¿³¬³ö×î´óÔöÁ¿·¶Î§£¬ÔòÁîÆäΪÔöÁ¿·¶Î§±ß ½çÖµ£»6)Óõü´ú½á¹ûÈ¡´ú1)ÖеÄÔ¤¹ÀÖµ£¬Öظ´ÉÏÊö²½Öè2)¡¢3)¡¢4)¡¢5)£¬Ö±µ½Ã¿ÖÖÄ¿±êÆø µÄŨ¶ÈÓëÉÏÒ»´Îµü´ú½á¹ûÖ®²îСÓÚÉ趨µÄÈÝÐíÆ«²î¡£ÏÂÃæÒÔ¼×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍéµÄ¼ÆËãΪÀý£¬ËµÃ÷±¾·¢ Ã÷רÀûµÄ¾ßÌåʵʩ·½Ê½
¡£(1)Ô¤¹ÀÄ¿±êÆøÌåÖи÷×é·ÖµÄŨ¶È¶ÔÓÚͼ1(a)ËùʾµÄ»ìºÏÆøÌåµÄ¹âÆ×ͼ£¬Ô¤Éè7×é·ÖÆøÌåµÄÄ¿±êÆøµÄŨ¶È·Ö±ðΪ 5%U. 5%U%>0. 5%,0. 5%,0. 2%ºÍ0. 2% £»¶ÔÓÚͼ1(b)ËùʾµÄ»ìºÏÆøÌåµÄ¹âÆ×ͼ£¬Ô¤Éè 7×é·ÖÆøÌåµÄÄ¿±êÆøµÄŨ¶È·Ö±ðΪ1%¡¢0¡¢0¡¢0¡¢0¡¢0ºÍ0¡£(2)¹À¼ÆÄ¿±êÆøÌå¸÷×é·ÖÔÚËù¸ÐÐËȤµÄ¹âÆ×¶Î¸÷Êý¾ÝµãµÄÕÛËãÎü¹âÂÊŨ¶È¾ùΪµÄµ¥×é·Ý¼×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍ鯸ÌåÔÚ ÖкìÍâ400µ½1400²¨Êý¶ÎµÄÎüÊÕ¹âÆ×È總ͼ2Ëùʾ£¬¸Ã¹âÆ×ͼÊDzÉÓÃBruker¹«Ë¾Alpha ¹âÆ×ÒÇ»ñµÃ£¬·Ö±æÂÊΪ4²¨Êý£¬Êä³öֵΪ͸¹âÂÊ£¬Òò´Ë¸÷ÆøÌå×é·ÖµÄÕÛËãÎü¹âÂÊΪSij = log (Vij)/Caj = Iog(Vij) (i = 1,2,¡£¬522 £»Aj e {¼×Íé¡¢ÒÒÍé¡¢±ûÍé¡¢Òì¶¡ Íé¡¢Õý¶¡Íé¡¢ÒìÎìÍéºÍÕýÎìÍé}) (2)
9
ʽÖÐlog( ¡¤)±íʾ×ÔÈ»¶ÔÊýÔËË㣻Vi±íʾĿ±êÆøµÚj×é·ÖAjÆÕͼÖÐËù¸ÐÐËȤ²¨Êý ¶ÎÖеÚiÆ×ÏߵĹâÆ×Öµ£»¦Ä ±íʾĿ±êÆøµÚj×é·ÖA^Æ×ͼÖÐËù¸ÐÐËȤ²¨Êý¶ÎÖеÚiÆ×ÏßµÄ µÄÕÛËãÎü¹âÂÊ£¬ËüÊÇʵ¼ÊÎü¹âÂÊÓë¹â³ÌµÄ³Ë»ý£»Ciu±íʾĿ±êÆøµÚj×é·ÖA^µÄŨ¶È¡£¿¼Âǵ½ ²¨Êý1300 1500µÄÖкìÍâ¹âÆ×¶ÎÊÜË®ÆûÓ°Ïì½Ï´ó£¬²¨Êý400 750µÄÖкìÍâ¹âÆ×¶Î°üº¬ÉÏ ÊöÆßÖÖÆøÌåŨ¶ÈÐÅÏ¢ÉÙ£¬ÇÒÊܶþÑõ»¯Ì¼Ó°Ïì½Ï´ó£¬ÕâÀïËù¸ÐÐËȤ²¨Êý¶ÎÖ»¿¼ÂDz¨Êý750 1300µÄÖкìÍâ¹âÆ×¶Î¡£¶ÔÓÚͼ1ÖÐËùʾµÄ¹âÆ×ͼ£¬³ý¼×ÍéÍ⣬ÆäËüÆøÌåŨ¶È½ÏС£¬¸÷×ÔµÄÎü¹âÂÊÔÚ½ÏСŨ ¶È±ä»¯·¶Î§ÄÚ²»»áÓнϴó²îÒ죬¿ÉÒÔѡȡΪʱµÄÎü¹âÂÊ¡£¶øÍ¼1(a)¼×ÍéµÄŨ¶È½Ï¸ß£¬Æä ÕÛËãÎü¹âÂÊÓëʱÏà±ÈÏà¶ÔҪСһЩ£¬Òò´ËÐèÒªÐÞÕý¡£ÐÞÕýµÄ·½·¨¿ÉÒÔÊÇ·Ö¶ÎÏßÐÔ»¯£¬Ò² ¿ÉÒÔÊÇÑùÌõ²åÖµ·¨¡¢¶àÏîʽ»Ø¹é·¨¡£Îª·½±ãÆð¼û£¬±¾ÊµÀý²ÉÓ÷ֶÎÏßÐÔ»¯¡£Èç¹û¼×Íéµ¥×é·Ö Ñù±¾ÖУ¬ÆäŨ¶È·Ö±ðΪ1%£¬3%£¬10%£¬30%£¬60%ºÍ100%£¬¼×ÍéÔ¤ÉèŨ¶ÈΪ5%£¬ÄÇô£¬²É Ó÷ֶÎÏßÐÔ»¯¿É¼ÆËã¼×ÍéµÚiÌõÆ×ÏßµÄÎü¹âÂÊ
(3)ʽÖÐrate = (5-3)/(10-3) = 2/7 £»ÌѺͱíʾ¼×ÍéŨ¶È·Ö±ðΪ3%ºÍ10%ʱ£¬¼× ÍéµÚiÌõÆ×ÏßµÄÎü¹âÂÊ¡£(3)ÔÚ¹âÆ×ͼ750µ½1300²¨Êý¶Î£¬¸ù¾ÝLambert-Beer¶¨Àí£¬»ñµÃ³õÊ¼ÖØ¹¹ÎüÊÕ¹â Æ×ͼ ʽÖÐexp( ¡¤)±íʾ×ÔȻָÊýÔËË㣬N±íʾĿ±êÆøÌåµÄÖÖÊý£¬ÕâÀïN = 7 £»(4)¼ÆËãÖØ¹¹Æ«²îÓëËðʧº¯ÊýÖµ¦Å j = Ui-Vi (5)Ñ¡Ôñ¹´Ðͺ¯Êý×÷ΪËðʧº¯Êý ʽÖÐUi±íʾʵ¼ÊɨÃè¹âÆ×ͼÖÐËù¸ÐÐËȤ²¨Êý¶ÎµÄµÚiÌõÆ×ÏßµÄÖµ£»M±íʾËùÖØ¹¹ µÄÎüÊÕ¹âÆ×¶ÎµÄ¹âÆ×Öµ¸öÊý£»ki¡¢k2Ϊʽ(1)ÖеĹ´ÐÍËðʧº¯ÊýµÄÐÎ״ϵÊý¡£ÕâÀïÑ¡Ôñ& = Uk2 = 100£¬¶ÔÓ¦ÓÚʽ(1)±íʾµÄ¹´Ðͺ¯ÊýµÄÇúÏßÈçͼ3Ëùʾ¡£(5)ÓÃÉñ¾ÍøÂçѧϰ·½·¨Öе͝Á¿·¨¶ÔÄ¿±êÆøÌåµÄŨ¶È½øÐеü´úÔËËã ʽÖЦÁ (j)Ϊ´ý·ÖÎöÆøÌåµÚj×é·Ö¡¢Å¨¶È¶¨Á¿·ÖÎöµÄѧϰÂÊ£¬¦ËΪ¶¯Á¿Òò×Ó£¬ÇÒ
tΪѧϰµü´ú´Î¡£¶ÔÓÚACAj£¬¿É²ÉÓÃʽ¢ÇÀ´¹À ¼Æ ʽÖÐeÊÇÒ»¸ö×㹻СÁ¿£¬¿ÉÈ¡e = 0. 01¡£Èç¹û¦¤ CAj > MaxAj£¬ÔòÁ CAj = MaxAJ, Èç¹û¦¤ Caj < MinAJ,ÔòÁ Caj = MinAJOÆäÖÐMaxAjºÍMinAj·Ö±ð±íʾÉ趨µÄÆøÌå×é·ÖAjŨ
10¶ÈµÄÔöÁ¿ÉÏÏÞºÍÏÂÏÞ£¬ÇÒMaxAj > 0,MinAJ < 0¡£±¾ÊµÀýÖÐÉ趨Æß×é·ÖÍéÌþÆøÌå¶ÔÓ¦µÄMaxAJ ·Ö±ðΪ0. 2,0. 1,0. 1,0. 05£¬0. 05£¬0. 02 ºÍ 0. 02£¬Miniu ·Ö±ðΪ-0. 2,-0. 1,-0. 1,-0. 05,-0. 05£¬-0. 02 ºÍ-0. 02 £»(6)Óõü´ú½á¹ûÈ¡´ú(2)ÖеÄÔ¤¹ÀÖµ£¬Öظ´ÉÏÊö²½Öè(3)¡¢(4)¡¢(5)£¬Ö±µ½ ÿÖÖÄ¿±êÆøµÄŨ¶ÈÓëÉÏÒ»´Îµü´ú½á¹ûÖ®²îСÓÚÉ趨µÄÈÝÐíÆ«²îE¡£¶ÔÓÚͼ1(a)£¬ ÕâÀïÑ¡Ôñ E =
£¬¶ÔÓÚͼ 1 (b)£¬ÕâÀïÑ¡Ôñ E =
¡£×îºóµÃµ½µÄ±Æ½ü¹âÆ×ͼÈçͼ4Ëùʾ¡£ÒÔÉÏÄÚÈÝÊǽáºÏ¾ßÌåµÄÓÅѡʵʩ·½Ê½¶Ô±¾·¢Ã÷Ëù×÷µÄ½øÒ»²½Ïêϸ˵Ã÷£¬²»ÄÜÈ϶¨ ±¾·¢Ã÷µÄ¾ßÌåʵʩ·½Ê½
½öÏÞÓÚ´Ë£¬¶ÔÓÚ±¾·¢Ã÷ËùÊô¼¼ÊõÁìÓòµÄÆÕͨ¼¼ÊõÈËÔ±À´Ëµ£¬ÔÚ²»ÍÑ Àë±¾·¢Ã÷¹¹Ë¼µÄǰÌáÏ£¬»¹¿ÉÒÔ×ö³öÈô¸É¼òµ¥µÄÍÆÑÝ»òÌæ»»£¬¶¼Ó¦µ±ÊÓΪÊôÓÚ±¾·¢Ã÷ÓÉËù Ìá½»µÄȨÀûÒªÇóÊéÈ·¶¨×¨Àû±£»¤·¶Î§¡£
ȨÀûÒªÇó
Ò»ÖÖ»ùÓÚÎüÊÕ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨£¬ÆäÌØÕ÷ÔÚÓÚÊ×ÏÈÔ¤¹À¸÷×é·ÖÄ¿±êÆøÌåµÄŨ¶È£¬¹À¼Æ¸÷×é·ÖÆøÌåÔÚ¹âÆ×Ëù¸ÐÐËȤµÄ²¨Êý¶Î·¶Î§ÄÚµÄÕÛËãÎü¹âÂÊ£¬»ñµÃ³õÊ¼ÖØ¹¹¹âÆ×ͼ£»Ñ¡ÔñËù¸ÐÐËȤµÄ²¨Êý¶Î·¶Î§ÄÚµÄÖØ¹¹¹âÆ×ͼÓëʵ¼ÊɨÃèµÃµ½µÄ¹âÆ×ͼ֮²îÎªÖØ¹¹Æ«²î£¬ÒÔÕâ¸öÆ«²î×÷ΪÊäÈ룬¹¹½¨¹´Ðͺ¯Êý×÷Ϊ¹âÆ×Í¼ÖØ¹¹µÄËðʧº¯Êý£¬²¢²ÉÓÃÉñ¾ÍøÂçѧϰËã·¨Öе͝Á¿·¨¶ÔÖØ¹¹¹âÆ×½øÐеü´úÔËË㣬ÒÔ¸üÐÂÿÖÖÄ¿±êÆøÌåŨ¶ÈÖµ£¬Ö±µ½ÏàÁÚÁ½´Îµü´ú½á¹ûÖУ¬ËùÓÐÄ¿±êÆøÌåŨ¶ÈÖµÖ®¼äµÄÆ«²îСÓÚÔ¤¶¨µÄÈÝÐíÆ«²î£»
2.ÈçȨÀûÒªÇó1ËùÊöµÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨£¬ÆäÌØÕ÷ÔÚÓÚËùÊö¹´Ðͺ¯Êý¾ß ÓÐÈçÏÂʽÐÎʽ ʽÖЦŠi = Ui-Vi,±íʾµÚiÌõÆ×Ïßʵ¼Ê¹âÆ×ÖµUiÓëÖØ¹¹¹âÆ×ÖµViÖ®²î£»kp k2³ÆÖ®Îª ¹´ÐÍËðʧº¯ÊýµÄÐÎ״ϵÊý¡£
3.ÈçȨÀûÒªÇó1ËùÊöµÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨£¬ÆäÌØÕ÷ÔÚÓÚËùÊö¸÷×é·ÖÆøÌå µÄÕÛËãÎü¹âÂÊÊǸù¾ÝÆäµ±Ç°Å¨¶È¹À¼ÆÖµ»òÔ¤ÉèÖµ£¬ÒÔ¼°ÏàÓ¦µ¥×é·ÖÆøÌåÑù±¾ÆøÌå¹âÆ×ͨ¹ý ÇúÏßÄâºÏ·¨À´¹À¼ÆµÄ£»ÇúÏßÄâºÏ·¨¼ÈÊÇ·Ö¶ÎÏßÐÔ»¯¡¢¶àÏîʽ±Æ½ü·¨»òÑùÌõ²åÖµ·¨£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌåÔȵÄɨÃè¹âÆ×ͼµÄ µÚi¸ö¹âÆ×ÖµViµÄ×ÔÈ»¶ÔÊý³ýÒÔµ¥×é·ÝÆøÌåA^µÄŨ¶ÈCiu£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ SijQO = log(Vi(k))/CAJ(k)£¬k = 1£¬2£¬¡¤¡¤¡¤, S ʽÖÐlog(¡¤)±íʾ×ÔÈ»¶ÔÊýÔËË㣻Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ×ͼµÄ µÚi¸ö¹âÆ×ÖµVi³ýÒÔµ¥×é·ÝÆøÌåA^µÄŨ¶È£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ ÓÚÊÇ£¬Èç¹ûµ¥×é·ÝÆøÌå^µÄ¹ÀËãŨ¶ÈΪ(^£¬Èô²ÉÓ÷ֶÎÏßÐÔ»¯¹ÀËã¦Ä¡ÓÐ ¦Ä ij = ( ¦Ä ¦Ô (k-1) - ¦Ä ¦Ô (k)) (Caj-Caj (k)) / (CAJ (k+1) -Caj (k)) ʽÖÐCAj´óÓÚCAj (k)£¬ÇÒСÓÚCAj (k+1)¡£ Èô²ÉÓöàÏîʽ±Æ½ü·¨¹ÀËã¦Ä¡ÓÐ
4.ÈçȨÀûÒªÇó1ËùÊöµÄ¶à×é·ÖÆøÌåŨ¶È¶¨Á¿·ÖÎö·½·¨£¬ÆäÌØÕ÷ÔÚÓÚËùÊöµü´úÔËËã·½ ·¨²ÉÓÃÉñ¾ÍøÂçµÄѧϰËã·¨Öе͝Á¿·¨¡¢×îËÙϽµ·¨¡¢ÒÅ´«Ëã·¨»òÄ£ÄâÍË»ð·¨À´ÊµÏÖ£¬²¢¶Ô ÿÖÖÆøÌåŨ¶ÈµÄÔöÁ¿É趨ÁËÉÏÏÞºÍÏÂÏÞ£¬ÒÔ±ÜÃâѧϰÊÕÁ²¹ý³ÌÖеÄÀ´»ØÌø±ä£¬Ôö¿ìÊÕÁ²ËÙ ¶È£»¾ßÌå°üÀ¨ÏÂÁв½Öè(1)Ô¤¹ÀN×é·ÖÆøÌåµÄÄ¿±êÆøApA2¡¢¡¡¢AnµÄŨ¶È·Ö±ðΪCA1¡¢CA2¡¢¡¡¢Can £»Ô¤¹ÀµÄ·½ ·¨ÊÇÔ¤ÉèŨ¶ÈÖµ·¨¡¢ÌØÕ÷Æ×ÏßµÄ×îС¶þ³Ë·¨¡¢Ö÷·ÖÁ¿»Ø¹é·¨¡¢¼ÓȨ×îС¶þ³Ë¹À¼Æ·¨»ò·´×îС ¶þ³Ë¹À¼Æ·¨£»Áî¹âÆ×·ÖÎöµÄM×é±ê¶¨Ñù±¾ÖÐY = [C1 C^Cn]±íʾN×é·ÖÆøÌåµÄÄ¿±êÆøµÄÆÚÍûŨ¶È ¾ØÕó£¬E = [E1 E2-EJ±íʾN×é·ÖÆøÌåµÄ²Ð²î¾ØÕó£¬H= [V1 V," Vl]±íʾËù¸ÐÐËȤµÄLÌõ Æ×ÏßÖµÐγɵľØÕ󣬯äÖÐ Ci = [Cil Ci2-CNM]T, Ei = [Eil Ei2¡EÀö]T£¬i = 1£¬2£¬¡£¬N£¬Vj = [Vjl Vj2 -VJM]T, j = 1,2, -",L0Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò×îС¶þ³Ë·¨¡¢¼ÓȨ×îС¶þ³Ë¹À¼Æ·¨ ¿É°´(Ia)ʽ¼ÆËã[CA1, CA2, -,CJ = Iog(V)W (Ia)¶ÔÓÚ×îС¶þ³Ë·¨£¬Ê½ÖÐW= inv(QTQ)QTY£¬¶ÔÓÚ¼ÓȨ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv(QtAQ) QtAY£¬ÆäÖÐinv( ¡¤)±íʾÇóÄæÔËË㣬Qij = Iog(Hij), AÊÇÒ»¸öLXLµÄ¼ÓȨ¾ØÕó£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò×îС¶þ³Ë·¨¡¢¼ÓȨ×îС¶þ³Ë¹À¼Æ·¨ ¿É°´(Ia)ʽ¼ÆËã[CA1, CA2, -,CJ = Vff (Ic)¶ÔÓÚ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv (HtH)HtY,¶ÔÓÚ¼ÓȨ×îС¶þ³Ë·¨£¬Ê½ÖÐW = inv (HtAH) HTAY £»(2)°´È¨ÀûÒªÇó3£¬¸ù¾Ý¸÷×é·ÖµÄŨ¶È£¬¼ÆËã¸÷×é·ÖÕÛËãÎü¹âÂʦĦԡ£¦Äu±íʾÔÚËù¸ÐÐË È¤¹âÆ×¶ÎÖеÚiÆ×ÏߵĹâÆ×Öµ¶ÔÓ¦µÄÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ£¬ËüÊÇʵ¼ÊÎü¹âÂÊÓë¹â³ÌµÄ³Ë »ý£»Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ×ͼµÄ µÚi¸ö¹âÆ×ÖµViµÄ×ÔÈ»¶ÔÊý³ýÒÔµ¥×é·ÝÆøÌåA^µÄŨ¶ÈCiu£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ Sij = log (Vi)/Caj (2a) ʽÖÐlog(¡¤)±íʾ×ÔÈ»¶ÔÊýÔËË㣻Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬Ôò¶ÔÓÚµ¥×é·ÝÆøÌå^µÄɨÃè¹âÆ×ͼµÄ µÚi¸ö¹âÆ×ÖµVi³ýÒÔµ¥×é·ÝÆøÌåA^µÄŨ¶È£¬¼´ÎªÄ¿±êÆøA^µÄÕÛËãÎü¹âÂÊ ¦Ä ij = V1ZCaj (2b)(3)ÔÚ¹âÆ×ͼÖÐËù¸ÐÐËȤµÄ¹âÆ×¶ÎÄÚ£¬»ñµÃ³õÊ¼ÖØ¹¹ÎüÊÕ¹âÆ×ͼÈç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÖØ¹¹¹âÆ×ͼÖеÚi¸ö¹âÆ×ֵΪN=exPC-E^ c^)(3a)7=1Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÖØ¹¹¹âÆ×ͼÖеÚi¸ö¹âÆ×ֵΪNVi = H8 if Aj(3b)J=IʽÖÐeXp( ¡¤)±íʾ×ÔȻָÊýÔËË㣬N±íʾĿ±êÆøÌåµÄÖÖÊý£»(4)Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔ͸¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÁîÖØ¹¹Æ«²îΪ ¦Å j = Ui-Vi(4a)Èç¹û¹âÆ×ÒÇÊä³ö¹âÆ×ͼÊÇÒÔÎü¹âÂÊ×÷ΪÊä³öµÄ£¬ÔòÁîÖØ¹¹Æ«²îΪ¦Å J = (Ui-Vi) exp (-Vi) (4b)ʽÖÐUi±íʾ¹âÆ×ɨÃèµÃµ½µÄÎüÊÕ¹âÆ×ͼÖеÚi¸ö¹âÆ×Öµ¡£Ñ¡Ôñ¹´Ðͺ¯Êý×÷ΪËðʧº¯Êýf(CAl,CA2,K ,C ) = |;(^2+(exp(M!)-l)2)(5)iʽÖÐM±íʾËùÖØ¹¹µÄÎüÊÕ¹âÆ×¶ÎµÄ¹âÆ×Öµ¸öÊý£¬Iq¡¢1^2³ÆÖ®Îª¹´ÐÍËðʧº¯ÊýµÄÐÎ״ϵÊý£»(5)ÓÃÉñ¾ÍøÂçѧϰ·½·¨Öе͝Á¿·¨¶ÔÄ¿±êÆøÌåµÄŨ¶È½øÐеü´úÔËËã Caj (t) = Caj (t-1) - ¦Á (j) [ (1- ¦Ë ) ¦¤ Caj (t_l) + ¦Ã ¦¤ Caj (t_2) ] (6) ʽÖЦÁ (j)ÎªÆøÌåAjÅ©¶È¶¨Á¿·ÖÎöµÄѧϰÂÊ£¬¦ËΪ¶¯Á¿Òò×Ó£¬ÇÒ¦Ë < 1£¬ A ³§ (Cl , C,,°Ë C ¦«\¦Ó )ACAj =-¡ª-£¬tΪѧϰµü´ú´ÎÊý¡£¶ÔÓÚ¦¤ Ciu£¬¿É²ÉÓÃʽ(7)À´¹À¼Æ^AjACA,.=df{E) /(C1 ,C2,¦« ,CAj + e,A ,Can)¡©=^T-:- (7)ʽÖÐeÊÇÒ»¸ö×㹻СµÄÁ¿£¬¿ÉÈ¡e = 0. 01 £»Èç¹û ¦¤ Caj > MaxAJ,ÔòÁî ¦¤ Caj = MaxAJ £»Èç¹û ¦¤ Caj < MinAJ,ÔòÁî ¦¤ Caj = MinAj£¬ÆäÖÐ MaxAJ ºÍMinAj·Ö±ð±íʾËùÉ趨µÄÆøÌå×é·ÖAjŨ¶ÈµÄÔöÁ¿ÉÏÏÞºÍÏÂÏÞ£¬ÇÒMaxAj > 0£¬MinAJ < 0 £»(6)Óõü´ú½á¹ûÈ¡´ú(1)ÖеÄÔ¤¹ÀÖµ£¬ÒÀ´ÎÖØ¸´ÉÏÊö²½Öè(2)¡¢(3)¡¢(4)¡¢(5)£¬Ö±µ½Ã¿ÖÖ Ä¿±êÆøµÄŨ¶ÈÓëÉÏÒ»´Îµü´ú½á¹ûÖ®²îСÓÚÉ趨µÄÈÝÐíÆ«²î¡£
È«ÎÄÕªÒª
±¾·¢Ã÷¹«¿ªÁËÒ»ÖÖ»ùÓÚ¹âÆ×Í¼ÖØ¹¹µÄ¶à×é·ÖÆøÌ嶨Á¿·ÖÎö·½·¨¡£Ê×ÏÈÔ¤¹À´ý·ÖÎöÆøÌåÖи÷×é·ÖµÄŨ¶ÈºÍÕÛËãÎü¹âÂÊ£¬¸ù¾ÝLambert-Beer¶¨ÀíÖØ¹¹¹âÆ×ͼ¡£È»ºóÒÔÖØ¹¹¹âÆ×ͼÓëʵ¼Ê¹âÆ×ͼµÄÆ×ÏßÖµÖ®²î×÷ΪÊäÈ룬¹¹½¨Ò»¸ö¹´ÐÍËðʧº¯Êý¡£ÊäÈëÒÔÁãΪ½ç£¬ÊäÈëСÓÚÁãʱ£¬º¯ÊýÖµµÝ¼õ£¬¼õ·ù½ÏС£¬ÊäÈë´óÓÚÁãʱ£¬º¯ÊýµÝÔö£¬Ôö·ù½Ï´ó¡£È»ºó²ÉÓö¯Á¿·¨»òÒÅ´«Ëã·¨¶Ô´ý·ÖÎöÆøÌåÖи÷×é·ÖŨ¶È½øÐеü´úÔËË㣬ֱµ½ÏàÁÚÁ½´Îµü´ú½á¹ûÖи÷×é·ÖŨ¶È²îСÓÚÔ¤ÉèµÄÈÝÐíÖµ£¬½áÊøµü´úÔËËã¡£±¾·¢Ã÷¹«¿ªµÄ·½·¨·ÖÎöËٶȿ졢½á¹û׼ȷ¡¢¸ÉÈÅÆø¶Ô·ÖÎö½á¹ûÓ°ÏìС£¬¿ÉÓÃÓÚÆøÂ¼¾®¡¢²úÆ·ÖÊÁ¿¼ì²éÓë¹ÊÕÏÕï¶Ï£¬ÒÔ¼°Îå½ð¡¢»¯¹¤¡¢»·±£µÈÁìÓòµÄ¶à×é·ÖÆøÌ嶨Á¿·ÖÎöÖС£
Îĵµ±àºÅG01N21/35GK101881727SQ201010218580
¹«¿ªÈÕ2010Äê11ÔÂ10ÈÕ ÉêÇëÈÕÆÚ2010Äê7ÔÂ6ÈÕ ÓÅÏÈȨÈÕ2010Äê7ÔÂ6ÈÕ
·¢Ã÷ÕßÁõ¾ý»ª, ÌÀÏþ¾ý ÉêÇëÈË:Î÷°²½»Í¨´óѧ