专利名称:损伤长度测定系统及损伤长度测定方法
技术领域:
本发明涉及一种损伤长度测定系统及损伤长度测定方法,其将振动件和多个振动检测传感器设置在被测定物上,测量从振动件经由被测定物向各振动检测传感器传播的振动的到达时间,根据相对于没有损伤的情况下的该到达时间的延迟时间,测定损伤长度。
背景技术:
如图3所示,可以测定将部件1和部件2结合后的被测定物的损伤长度。S卩,在部件1上设置由压电元件等构成的振动件3,在部件2上设置FBG(Fiber Bragg Grating:光纤布拉格光栅)光纤传感器等振动检测传感器4。由振动件3起振,测量从振动件3经由被测定物向振动检测传感器4传播的振动的到达时间。到达时间的测定,首先作为校准值,如图3 (a)所示对没有损伤的被测定物进行测定。在这种情况下,在如图3(a)所示的振动传播路径Ila上,从振动件3向振动检测传感器4传播振动(弹性波)。记录保持该振动的到达时间。然后,作为实际测定,如图3(b) (C)所示,对仅检查有无损伤的同一构造的被测定物,原则上在相同的位置上设置振动件3及振动检测传感器4,测定到达时间(在未设置在相同位置的情况下,减去相应的传播时间)。如图3(b)所示,在作为损伤而在粘合层10上产生剥离12a的情况下,振动在如图所示的振动传播路径lib上传播,但是因为剥离1 未发展至振动检测传感器4下方,所以对振动的到达时间几乎不产生影响。另一方面,在如图3 (c)所示产生发展至振动检测传感器4下方的剥离12b的情况下,振动在如图示所示的振动传播路径Ilc上绕过剥离12b而传播,振动的到达时间产生延迟。因此,通过计算实际测定时的到达时间和校准时的到达时间之间的差,可以判断剥离是否发展至振动检测传感器4下方。而且,在剥离发展至振动传感器4下方的情况下, 可以如下述所述计算剥离长度。如图3所示,将从振动件3与振动检测传感器4之间的粘合层10的端部位置至振动件3为止的距离设为a,将从粘合层10的端部位置至振动检测传感器4之间的距离设为 b。距离a、b是已知的值。在根据到达时间产生延迟而可以判断剥离发展至振动检测传感器4下方的情况下,如图3(c)所示,将从振动检测传感器4下方开始进一步发展的剥离长度作为距离C。则所求取的剥离长度为(b+c)。如果将到达时间的延迟时间设为At,则因为沿着振动传播路径Ila的传播距离、 和沿着振动传播路径Ilc的传播距离之间的差是OXc),所以如果将振动的群速度设为V, 则At= OXc)/V,将这个式子变形为C= (VX At)/2。因此,通过代入测定的At,求得 c,并求得剥离长度(b+c) = (b+(VX At)/2)。振动检测传感器4检测的振动的分析,可以通过如专利文献1所述的利用了滤光
4器的波动解析装置进行,通过对检测出的波动信号进行运算处理,可以取得如图4所示的振动的时间变化,并可以确定振动的峰值。并且,可以根据最大峰值的时间偏移而计算到达时间的延迟,如上述所述测定损伤长度。专利文献1 日本特开2008-139171号公报
发明内容
在如图4(a)所示的振动波形的情况下,基于最大峰值Pl的到达时间Ta推定损伤长度的可靠性高。但是,根据损伤的状态,如图4(b)所示,在振动波形中由于反射等而产生的多个波会重合,有时会在与本来应捕捉的峰值P2不同的位置产生最大峰值p3,基于其到达时间 Tb而推定出错误的损伤长度。当前,因为无法判别最大峰值p3是按照参照图3说明的上述理论的振动延迟所产生的峰值,还是由于反射等其他原因而变高的峰值,所以有时会根据错误的测量而判断损伤正在发展。本发明就是鉴于上述当前技术中的问题而提出的,其课题在于提供一种损伤长度测定系统及损伤长度测定方法,其具有高可靠性,可以高精度地测定损伤长度。用于解决上述课题的技术方案1所述的发明是一种损伤长度测定系统,其具有振动件,其对被测定物施加超声波振动;多个振动检测传感器,它们在不同的位置,对由所述振动件起振并在所述被测定物中传播的振动波进行检测;以及测量装置,其控制所述振动件的起振,并对所述振动检测传感器的检测信号进行运算处理,对各振动检测传感器检测出的振动波进行解析,所述测量装置执行下述处理(1)分别计算由从所述多个振动检测传感器选择出的至少2个传感器检测出的振动波的最大峰值的到达时间,计算其差量;(2)在所述(1)的处理之后,判断该差量是否落入基准范围,该基准范围是包含上述被选择的传感器间的振动传播时间而确定的;(3)在所述O)的处理中判断该差量落入所述基准范围的情况下,基于所述最大峰值的到达时间相对于校准值的延迟时间,计算损伤长度;(4)在所述O)的处理中判断该差量未落入所述基准范围的情况下,对与该差量相关的至少一个振动检测传感器,检测比所述最大峰值先到达且大于或等于规定振幅的峰值;以及(5)在所述的处理中可以检测出大于或等于所述规定振幅的峰值的情况下, 替换为该峰值的到达时间而计算所述差量之后,执行所述O)、(3)的处理。技术方案2所述的发明是根据技术方案1所述的损伤长度测定系统,其具有大于或等于3个的所述振动检测传感器,所述测量装置在上述的处理中,分别计算由特定的振动检测传感器检测出的振动波的最大峰值与由其它的振动检测传感器检测出的振动波的最大峰值之间的差量,在该差量的任意一个均未落入所述基准范围的情况下,将由该特定的振动检测传感器检测出的振动波,作为对大于或等于所述规定振幅的峰值进行检测的处理的对象,执行所述(4) 的处理。技术方案3所述的发明是损伤长度测定方法,其由振动件对被测定物施加超声波振动,由多个振动检测传感器在不同的位置,对由所述振动件起振并在所述被测定物中传播的振动波进行检测,执行测量处理,S卩,控制所述振动件的起振,并对所述振动检测传感器的检测信号进行运算处理,对各振动检测传感器检测出的振动波进行解析,在所述测量处理中执行下述处理(1)分别计算由从所述多个振动检测传感器选择出的至少2个传感器检测出的振动波的最大峰值的到达时间,计算其差量;(2)在所述(1)的处理之后,判断该差量是否落入基准范围,该基准范围是包含上述被选择的传感器间的振动传播时间而确定的;(3)在所述O)的处理中判断该差量落入所述基准范围的情况下,基于所述最大峰值的到达时间相对于校准值的延迟时间,计算损伤长度;(4)在所述O)的处理中判断该差量未落入所述基准范围的情况下,对与该差量相关的至少一个振动检测传感器,检测比所述最大峰值先到达且大于或等于规定振幅的峰值;以及(5)在所述的处理中可以检测出大于或等于所述规定振幅的峰值的情况下, 替换为该峰值的到达时间而计算所述差量之后,执行所述O)、(3)的处理。技术方案4所述的发明是根据技术方案3所述的损伤长度测定方法,其使用大于或等于3个的所述振动检测传感器,在上述的处理中,分别计算由特定的振动检测传感器检测出的振动波的最大峰值与由其它的振动检测传感器检测出的振动波的最大峰值之间的差量,在该差量的任意一个均未落入所述基准范围的情况下,将由该特定的振动检测传感器检测出的振动波,作为对大于或等于所述规定振幅的峰值进行检测的处理的对象,执行所述(4)的处理。发明的效果根据本发明,因为基于由多个振动检测传感器分别检测出的多个振动波计算损伤长度,所以例如通过计算平均值,可以高精度地测定损伤长度。在捕捉到由于反射等其他原因而变高的最大峰值的情况下,峰值检测中会出现错误,如果直接使用该峰值,则会使测量出现错误,根据本发明,利用弹性波在距离一定的2 个振动检测传感器间传播的时间是一定的这一点,判定峰值到达时间上是否存在矛盾。并且,利用反射波绕过损伤比直接到达的波延迟这一点,计算并使用比最大峰值先到达的峰值的到达时间。S卩,根据本发明,具有如下效果判断由2个振动检测传感器分别检测出的振动波的最大峰值的到达时间的差量是否落入基准范围,该基准范围包含2个振动检测传感器间的振动传播时间,在落入基准范围的情况下,可以正确计算,在未落入基准范围的情况下, 通过替换为比最大峰值先到达且大于或等于规定振幅的峰值,可以校正峰值检测中的错误,可以高精度地测定,还可以提高测定值的可靠性。
图1是本发明的一个实施方式涉及的被测定物及损伤长度测定系统的构成图。图2是表示根据本发明的一个实施方式涉及的损伤长度测定系统及损伤长度测定方法进行处理的流程的流程图。图3是对损伤长度测定的原理进行说明的构成图。图4是表示由振动检测传感器检测并由测量装置解析的振动波形的波形图。
具体实施例方式下面,参照附图对本发明的一个实施方式进行说明。下面仅是本发明的一个实施方式,并不是限定本发明。如图1所示,本实施方式的损伤长度测定系统,以将部件1和部件2粘合后的被测定物作为测定对象。为此,本实施方式的损伤长度测定系统具有振动件3 ;3个振动检测传感器4、5、 6;以及测量装置7。振动件3由压电元件构成,其向被测定物施加超声波振动。振动件3设置于部件 1上。振动检测传感器4、5、6是FBG (Fiber Bragg Grating 光纤布拉格光栅)光纤传感器。振动检测传感器4、5、6设置于部件2上。从部件1和部件2的粘合层10的端部向内侧,按照振动检测传感器4、振动检测传感器5、振动检测传感器6的顺序排列。从粘合层 10的端部至各振动检测传感器4、5、6为止的距离,按顺序分别为P1、P2、P3。测量装置7控制振动件3的起振,对振动检测传感器4、5、6的检测信号进行运算处理,并对各振动检测传感器4、5、6检测出的振动波如下述说明所示进行解析,计算损伤长度。测量装置7首先执行由如图2的流程图中所示的处理步骤& Sd组成的校准。 校准对没有损伤而正常的由部件1、2及粘合层10构成的被测定物进行,并将在该正常的被测定物中传播的振动波的最大峰值的到达时间作为校准值而记录。在校准中,首先,测量装置7为了开始测量而控制振动件3,由振动件3产生振动 (处理步骤Sa),另一方面,取得由各振动检测传感器4、5、6检测出的振动波(处理步骤 Sb)。S卩,测量装置7在处理步骤Sb中,将振动检测传感器4、5、6的输出值的时间变化数值数据化。如果将其可视化,则如图4的波形图所示。然后,测量装置7通过计算求得各振动波中的最大峰值(处理步骤&)。其方法并不限定,例如,可以通过对振动波数据进行希尔伯特变换而求得。然后,测量装置7将从测量开始时直至振动波达到最大峰值时的时间,确定作为振动波的最大峰值的到达时间,并记录保存在内部存储器等中(处理步骤Sd)。该记录的值成为校准值。通过上述步骤,校准结束。下面,对实际测定进行说明,该实际测定由如图2的流程图中所示的处理步骤 Se Sq组成。
通过本损伤长度测定系统,可以对下述构造物的损伤进行测定,该构造物与如上所述记录了校准值的由部件1、2及粘合层10构成的构造相同。相对于作为该构造物的被测定物,将振动件3及振动检测传感器4、5、6设置于与上述校准时相同的位置上。与进行校准时同样地,测量装置7为了开始测量而控制振动件3,利用振动件3产生振动(处理步骤%),另一方面,取得由各振动检测传感器4、5、6检测出的振动波(处理步骤Sf)。然后,测量装置7通过计算求出各振动波中的最大峰值(处理步骤Sg)。然后,测量装置7将从测量开始时直至振动波成为最大峰值时的时间,确定作为振动波的最大峰值的到达时间,并记录保存在内部存储器等中(处理步骤Si)。该记录的值相当于振动波的最大峰值的到达时间的实际测量值。然后,测量装置7计算在处理步骤Sd中记录的校准值tr、和在处理步骤Sh中记录的实际测量值t之间的差量即校准值差量(处理步骤Si)。在这里,为了进行理论说明, 将基于各振动检测传感器4、5、6检测出的值的该校准值差量,按顺序设为Atl = tl-trl, At2 = t2-tr2、At3 = t3_tr3。然后,测量装置7从步骤Si计算出的校准值差量Δ tl、At2、Δ t3中任意选出 2个作为一个组合,并计算每个组合中的2个值之间的差量,并将此作为传感器间差量,即 (Atl_At2)、(At2_At3)、(At3-Atl)(处理步骤 Sj)。处理步骤Sg及该处理步骤Sj相当于上述(1)的处理。各传感器间差量 (Atl_At2)、(At2_At3)、(At3-Atl)与在振动检测传感器间往复的振动传播时间相寸。然后,测量装置7判断各传感器间差量(Atl_At2)、(At2_At3)、(At3-Atl) 是否落入基准范围,该基准范围是包含2个振动检测传感器间的振动传播时间而确定的 (处理步骤Sk相对于上述O)的处理)。在这里,对基准范围进行说明。如果将振动的群速度设为V,则参照图3,根据上述的剥离长度理论公式 (b+(VX At)/2)得到的剥离长度,如果使用Atl和Pl则成为(P1+(VX Atl)/2),如果使用 Δ t2 和 P2 则成为(P2+ (VX Δ t2) /2),如果使用 Δ t3 和 P3 则成为(P3+ (VX Δ t3) /2)。因为这些剥离长度相等,所以以下3个等式成立S卩,(Pl+(VXAtl)/2)= (P2+(VX At2)/2) , (P2+(VX At2)/2) = (P3+(VX Δ t3)/2),(P3+(VX Δ t3)/2)= (P1+(VX Atl)/2)。如果将这3 个等式变形,则成为(Atl_At2) =2(P2_P1)/V,(At2-At3)= 2(P3-P2)/V, (At3-Atl) =2(P1_P3)/V。这3个等式的各自的右边是常数,等于2个振动检测传感器间的往复振动传播时间。即,2(P2_P1)/V等于经由振动检测传感器4、5间的被测定物的往复振动传播的时间,2(P3-P2)/V等于经由振动检测传感器5、6间的被测定物的往复振动传播的时间, 2( 1寸;3)八等于经由振动检测传感器4、6间的被测定物的往复振动传播的时间。因为波的传播距离和速度是确定的,所以它们均为常数。以这些2 (P2-P1) /V、2 (P3-P2) /V、2 (P1-P3) / V作为基准值,分别确定包含各基准值的基准范围。通常是以基准值为中心值的规定幅度的数值范围。
根据基于实际测定的各传感器间差量(Atl_At2)、(At2_At3)、(At3-Atl) 是否落入该基准范围,利用与上述规定幅度相对应的一定的可靠性,可以判断是否正确地检测出最大峰值。这是因为,在超出基准范围的情况下,测量装置7所捕捉的各最大峰值不是同一个波的可能性高。测量装置7在处理步骤Sk中执行在处理步骤Sj中计算出的各传感器间差量之中是否存在落入上述基准范围的判断。并且,在判断存在未落入基准范围的传感器间差量的情况下,测量装置7执行下述处理对该传感器间差量涉及的至少一个振动检测传感器,执行对检测的比最大峰值先到达且大于或等于规定振幅的峰值的数据的校正处理(处理步骤 Si)。例如,在处理步骤Sk中,判断传感器间差量(Atl_At2)及传感器间差量 (At3-Atl)未落入各自的基准范围,且判断传感器间差量(At2_At3)落入其基准范围的情况下,因为Atl存在问题的可能性高,所以在处理步骤Sl中执行下述处理对由振动检测传感器4检测出的振动波,执行对检测的比最大峰值先到达且大于或等于规定振幅的峰值的校正处理。作为该处理,例如将基准范围外的振动波的最大峰值的振幅的一半作为规定振幅,重新检索从测量开始时至到达最大峰值时为止的大于或等于规定振幅的峰值, 并可以将最先出现的峰值作为应该置换的峰值。同样地,在At2存在问题的可能性高的情况下,对由振动检测传感器5检测出的振动波进行同样的处理,在At3存在问题的可能性高的情况下,对由振动检测传感器6检测出的振动波进行同样的处理。这样,在存在大于或等于3个振动检测传感器的情况下,在由特定的振动检测传感器(例如振动检测传感器4)检测出的振动波的最大峰值、与由其他的各自的振动检测传感器(例如振动检测传感器5、6)检测出的振动波的最大峰值之间的传感器间差量的任意一个均未落入基准范围时,测量装置7判断将由该特定的振动检测传感器(例如振动检测传感器4)检测出的振动波,作为校正处理的对象。测量装置7在处理步骤Sl中,在如上述所述可以检测出先到达且大于或等于规定振幅的峰值的情况下,进行将最大峰值的到达时间替换为该峰值的到达时间的校正,在处理步骤Sm中,判断为“校正完成”,返回处理步骤Sh,并基于校正后的新的最大峰值到达时间的值执行处理步骤Si以后的处理。测量装置7在处理步骤Sl中,在先到达且大于或等于规定振幅的峰值1个也没有检测出的情况下,在处理步骤Sm中判断为“不可校正”,进入处理步骤Sn。并且,在处理步骤Sn中,将被判断为“不可校正”并由该特定的振动检测传感器检测出的校准值差量数据认定为“不使用的数据”,并返回处理步骤Sj。并且,在处理步骤Sj中,只使用除去了被认定为“不使用的数据”的校准值差量数据之后的数据重新计算传感器间差量,并执行处理步骤Sk以后的处理。例如,在处理步骤Sk中,在判断传感器间差量(Atl_At2)及传感器间差量 (At3-Atl)未落入各自的基准范围,且判断传感器间差量(At2_At3)落入其基准范围的情况下,执行下述处理对由振动检测传感器4检测出的振动波,执行检测比最大峰值先到达且大于或等于规定振幅的峰值的处理。在其结果是未检测出先到达且大于或等于规定振幅的峰值的情况下,对由振动检测传感器5、6检测出的振动波,不使用由振动检测传感器4检测出的校准值差量Δ tl,而是使用最大峰值的到达时间的校准值At2、At3,重新计算传感器间差量(At2_At3)。这样,从处理步骤Sm向处理步骤Si的返回处理、以及从处理步骤Sm经由处理步骤Sn向处理步骤Sj的返回处理,在处理步骤Sk中,直到判断为不存在落入基准范围的传感器间差量为止,均被重复计算。换言之,或者直到剩下的所有的传感器间差值未落入基准范围为止,或者由于未剩下大于或等于2个的“可以使用”的校准值差量数据而不能重新计算为止,均重复执行。测量装置7在处理步骤Sk中,在判断未落入基准范围的传感器间差量不存在的情况下,进入处理步骤So。测量装置7在处理步骤So中,判断是否存在被判断未落入基准范围的传感器间差量,即判断是否存在被判断为可以使用的校准值差量数据。如果存在可以使用的校准值差量数据,则进入处理步骤Sp。测量装置7在处理步骤Sp中,基于所有可以使用的校准值差量数据分别计算剥离长度,并计算其平均剥离长度。例如,如上述例子所述,在由振动检测传感器4检测出的校准值差量Atl被认定为“不使用的数据”,并最终在处理步骤Sk中判断传感器间差量(At2_At3)落入基准范围的情况下,对由振动检测传感器5、6检测出的振动波,基于最大峰值的到达时间相对于校准值的延迟时间Δ 2、Δ t3,执行计算损伤长度的处理。即,有效利用校准值差量At2、 At3,通过(P2+(VX At2)/2)、(P3+(VX Δ t3)/2)计算剥离长度,并将其平均值作为测定值输出。另一方面,测量装置7在处理步骤So中,在判断不存在可以使用的校准值差量数据的情况下,进入处理步骤Sq,对由最接近振动件的振动检测传感器4检测出的振动波,基于最大峰值的到达时间相对于校准值的延迟时间Δ ,计算损伤长度,并将此作为测定值输出。此外,在上述的实施方式中,对振动检测传感器为3个的情况进行了说明,当然在大于或等于4个的情况下也可以和上述一样测定。另外,例如在只有振动检测传感器4、5这2个振动检测传感器的情况下,可以如下进行处理步骤Sk以后的处理。在处理步骤Sk中,在判断传感器间差量(Atl-AU)未落入其基准范围的情况下,在Sl中,对由振动检测传感器4、5检测出的振动波,执行检测比最大峰值先到达且大于或等于规定振幅的峰值的处理。例如,对由振动检测传感器4或振动检测传感器5检测出的振动波,在可以检测出比最大峰值先到达且大于或等于规定振幅的峰值的情况下,对由振动检测传感器4或振动检测传感器5检测出的振动波,进行将最大峰值的到达时间置换为大于或等于该规定振幅的峰值的到达时间的校正,在处理步骤Sm中判断为“校正完成”, 返回处理步骤Sh,并基于校正后的最新的最大峰值到达时间的值,执行处理步骤证以后的处理。测量装置7对由振动检测传感器4、振动检测传感器5检测出的振动波,在比最大峰值先到达且大于或等于规定振幅的峰值1个也没有检测出的情况下,判断为“不可校正”, 并进入处理步骤Sn的处理,将由振动检测传感器4、振动检测传感器5检测出的校准值差量数据认定作为“不使用的数据”。另外,在上述的实施方式中,假定损伤的前端达到超过振动检测传感器4的位置的程度,即对损伤长度大于或等于Pi程度的情况进行了说明。理论上,在损伤长度未达到Pl的情况下,所有的校准值差量为0。因此,在图4中,将所有的校准值差量是否为0的判断处理步骤设置在处理步骤Si之后,如果所有的校准值差量为0,则为了方便,将损伤长度作为Pi或0计算,并可以结束处理。 在以上的实施方式中,损伤为粘合层剥离,但对部件的裂缝等损伤,当然也可以与上述相同地测定。
权利要求
1.一种损伤长度测定系统,其特征在于,具有振动件,其对被测定物施加超声波振动;多个振动检测传感器,它们在不同的位置,对由所述振动件起振并在所述被测定物中传播的振动波进行检测;以及测量装置,其控制所述振动件的起振,并对所述振动检测传感器的检测信号进行运算处理,对各振动检测传感器检测出的振动波进行解析,所述测量装置执行下述处理(1)分别计算由从所述多个振动检测传感器选择出的至少2个传感器检测出的振动波的最大峰值的到达时间,计算其差量;(2)在所述(1)的处理之后,判断该差量是否落入基准范围,该基准范围是包含上述被选择的传感器间的振动传播时间而确定的;(3)在所述O)的处理中判断该差量落入所述基准范围的情况下,基于所述最大峰值的到达时间相对于校准值的延迟时间,计算损伤长度;(4)在所述O)的处理中判断该差量未落入所述基准范围的情况下,对与该差量相关的至少一个振动检测传感器,检测比所述最大峰值先到达且大于或等于规定振幅的峰值; 以及(5)在所述的处理中可以检测出大于或等于所述规定振幅的峰值的情况下,替换为该峰值的到达时间而计算所述差量之后,执行所述O)、(3)的处理。
2.根据权利要求1所述的损伤长度测定系统,其特征在于,具有大于或等于3个的所述振动检测传感器,所述测量装置在上述的处理中,分别计算由特定的振动检测传感器检测出的振动波的最大峰值与由其它的振动检测传感器检测出的振动波的最大峰值之间的差量,在该差量的任意一个均未落入所述基准范围的情况下,将由该特定的振动检测传感器检测出的振动波,作为对大于或等于所述规定振幅的峰值进行检测的处理的对象,执行所述的处理。
3.一种损伤长度测定方法,其特征在于,由振动件对被测定物施加超声波振动,由多个振动检测传感器在不同的位置,对由所述振动件起振并在所述被测定物中传播的振动波进行检测,执行测量处理,即,控制所述振动件的起振,并对所述振动检测传感器的检测信号进行运算处理,对各振动检测传感器检测出的振动波进行解析,在所述测量处理中执行下述处理(1)分别计算由从所述多个振动检测传感器选择出的至少2个传感器检测出的振动波的最大峰值的到达时间,计算其差量;(2)在所述(1)的处理之后,判断该差量是否落入基准范围,该基准范围是包含上述被选择的传感器间的振动传播时间而确定的;(3)在所述O)的处理中判断该差量落入所述基准范围的情况下,基于所述最大峰值的到达时间相对于校准值的延迟时间,计算损伤长度;(4)在所述O)的处理中判断该差量未落入所述基准范围的情况下,对与该差量相关的至少一个振动检测传感器,检测比所述最大峰值先到达且大于或等于规定振幅的峰值; 以及(5)在所述的处理中可以检测出大于或等于所述规定振幅的峰值的情况下,替换为该峰值的到达时间而计算所述差量之后,执行所述O)、(3)的处理。
4.根据权利要求3所述的损伤长度测定方法,其特征在于, 使用大于或等于3个的所述振动检测传感器,在上述的处理中,分别计算由特定的振动检测传感器检测出的振动波的最大峰值与由其它的振动检测传感器检测出的振动波的最大峰值之间的差量,在该差量的任意一个均未落入所述基准范围的情况下,将由该特定的振动检测传感器检测出的振动波,作为对大于或等于所述规定振幅的峰值进行检测的处理的对象,执行所述(4)的处理。
全文摘要
一种损伤长度测定系统及方法,其可以校正振动波的峰值的误检测,可以高可靠性且高精度地测定损伤长度。由3个传感器分别检测由振动件起振且在被测定物中传播的振动。由测量装置解析其振动波,测定最大峰值的到达时间。对事先测定的没有损伤的被测定物,记录其最大峰值的到达时间,基于测定的最大峰值与该最大峰值之间的差量计算损伤长度。利用波在距离确定的2个传感器间的传播时间一定,根据2个传感器间的到达时间差是否落入包含2个振动检测传感器间的振动传播时间而确定的基准范围判断正误。在判断为错误的情况下,利用错误的波比本来应捕捉的波延迟这一点,检测比最大峰值先到达且大于或等于规定振幅的峰值,并替换为该值,计算损伤长度。
文档编号G01S5/30GK102193083SQ20111003529
公开日2011年9月21日 申请日期2011年2月9日 优先权日2010年2月9日
发明者津端裕之 申请人:富士重工业株式会社