רÀûÃû³Æ£ºÓÃÓÚÈ·¶¨·ÇÏà¸É³éÑùÊý¾ÝµÄ¹¦ÂÊÆµÆ×µÄµÍй¶¼¼ÊõµÄÖÆ×÷·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°µç×Ó×°ÖòâÊÔÉ豸ºÍ·½·¨£¬¾ßÌåÉæ¼°ÓÃÓÚ´Óµç×Ó²âÊÔÐźÅÖгé³ö²âÊÔÐÅºÅÆµÂÊ·ÖÁ¿µÄ·ù¶ÈµÄ¼¼Êõ¡£
ÖÚËùÖÜÖª£¬Ã¿µ±³éÑùʱÖÓÓë³éÑùÐźŲ»¡°Ïà¸É¡±Ê±£¬±»³ÆÎª¡°Ð¹Â©¡±µÄÎó²î¾Í»áÏÔÏÖÔÚÓÉDFTÉú³ÉµÄ¹¦ÂÊÆµÆ×ÖС£Èç¹û³éÑùʱÖӵįµÂÊÊdzéÑùÐźÅÄÚ´æÔڵĸ÷ƵÂʵľ«È·Õû±¶Êý£¬Ôò³éÑùʱÖÓÊÇ¡°Ïà¸ÉµÄ¡±¡£Ð¹Â©ÊÇ¶Ô½Ø¶ÏÆµÂÊ£¬¼´ÔÚ³éÑù´°¿ÚÄÚδÍê³ÉÕû¸öÑ»·µÄƵÂÊÖ´ÐÐDFTµÄÊýÑ§ÍÆÂÛ¡£Ëæ×ÅÆ×ÏßµÄÎóÕ¹¿í¡¢¼Ù²¨·åºÍ¼Ù²¨¹È(͹Æð²¿)µÄÉú³É¡¢ÒÔ¼°¹¦ÂÊÆµÆ×ÔëÉù×îµÍÏ޶ȵÄÒ»°ãÉý¸ß£¬»á¹Û²ìµ½Ð¹Â©¡£
ÒÑÉè¼ÆÁ˶àÖÖ·½·¨À´¼õÉÙй©¡£Ò»ÖÖ·½·¨ÊÇÔö¼Ó³éÑùËÙ¶È¡£Ò»°ãÀ´Ëµ£¬³éÑùËÙ¶ÈÔ½¸ß£¬¸ÐÐËȤƵÂÊ·¶Î§ÄڵĽضÏÁ¿¾ÍԽС£¬Ð¹Â©Îó²î¾ÍԽС¡£¸Ã·½·¨¾¡¹ÜÓÐЧ£¬È»¶øÔö¼Ó³éÑùËÙ¶ÈÀ´¼õÉÙй©½öÓëÕâÖÖÔö¼ÓµÄ·ù¶È³ÉÕý±È¡£¶øÇҸ÷½·¨ÍùÍù»á´ó·ùÔö¼ÓËùÓóéÑùÉ豸µÄ³É±¾¡£
ÓÃÓÚ¼õÉÙй©µÄÁíÒ»³£Óü¼ÊõÊÇÓÿª´°¿Úº¯ÊýÀ´³ËÒÔ³éÑùµÄÊý¾ÝÐòÁС£´°¿Úº¯Êý¾ßÓÐʹ³éÑùÊý¾ÝÐòÁÐÎ§ÈÆÆä¶ËµãµÝ¼õµÄЧ¹û£¬´Ó¶øÏû³ý»áÒýÆðй©Îó²îµÄ²»Á¬ÐøÐÔ¡£¿ÉʹÓò»Í¬µÄ´°¿Úº¯Êý£¬ÀýÈ磬Blackman£¬Hanning£¬»òHamming´°¿Úº¯Êý£¬Ã¿ÖÖº¯Êý¾ù¾ßÓÐÆä×ÔÉí¾ßÌåÌØÐÔ¡£´°¿Úº¯ÊýÍùÍù»á¼õÉÙÓ빦ÂÊÆµÆ×ÖеIJ¨·åÏà¸ôÒ»¶¨¾àÀëµÄй©ƫ²î£¬µ«Ò²ÍùÍù»áÉú³É½Ï¿í²¨·å¡£ÕâÑù£¬ÕâЩ´°¿Úº¯Êý¾ßÓÐÖØÐ·ÖÅäй©¶ø²»ÊÇÍêÈ«Ïû³ýй©µÄЧ¹û¡£¶øÇÒ£¬ÓÉÓÚ´°¿Úº¯Êýʵ¼Ê¸Ä±äÖ´ÐÐDFTµÄÊý¾Ý£¬Òò¶øÕâЩ´°¿Úº¯ÊýÍùÍù»áʹƵÆ×ÂÔÎ¢Ê§Õæ¡£
»¹ÓÐÒ»ÖÖ¼¼ÊõÊǰ´ÕÕÓë³éÑùÐÅºÅÆµÂÊÏà¸ÉµÄ³éÑùËٶȶԲ¨ÐÎÊý¾Ý¡°ÖØÐ³éÑù¡±¡£ÖØÐ³éÑù¹¤×÷ÊÇͨ¹ýÔÚ°´ÕÕijһËٶȳéÑùµÄʵ¼ÊµãÖ®¼ä½øÐвåÖµÀ´ÊµÏֵģ¬ÒÔ±ãÔÚÊýѧÉϹ¹½¨Ò»ÏµÁе㣬¸ÃһϵÁе㿴ÆðÀ´ÒѰ´ÕÕijһ²»Í¬ËٶȽøÐгéÑù¡£¾¡¹ÜÖØÐ³éÑù¶ÔÓÚ¼õÉÙй©»á¼«ÆäÓÐЧ£¬È»¶øËüµÄ¼ÆË㹤×÷Á¿´ó£¬²¢ÇÒÆä¾«¶È»áÊܵ½²åÖµÎó²îµÄÓ°Ïì¡£
»¹ÓÐÒ»ÖÖ¼õÉÙй©µÄ¼¼ÊõÊǸıä³éÑùʱÖÓËÙ¶È£¬ÒÔʹ¸ÃËÙ¶ÈÓëÔÚ³éÑùÐźÅÖз¢Ïֵĸ÷ƵÂʵÄÕû±¶Êý¾«È·ÏàµÈ¡£¸Ã¼¼ÊõË伫ÆäÓÐЧ£¬µ«ÐèÒª¼Û¸ñ°º¹óµÄÓ²¼þ¡£µ±²âÊÔÒǰüÀ¨´óÁ¿³éÑùʱÖÓʱ£¬¸Ã·½°¸ÓÈÆä¼Û¸ñ°º¹ó£¬¶øÇé¿ö¾³£ÊÇÕâÑù¡£
×Ô¶¯²âÊÔÉ豸(ATE»ò¡°²âÊÔÒÇ¡±)µÄÖÆÔìÉÌÒ»°ãͨ¹ýÌṩ¼Û¸ñ²»¹óµÄ³£¹æ²âÊÔÎÊÌâ½â¾ö·½°¸À´Á¦Í¼¸ÄÉÆÆä²úÆ·¡£Í¨¹ýÔö¼Ó²âÊÔÒÇÐÔÄÜ£¬Í¬Ê±½µµÍ²âÊÔÒdzɱ¾£¬¿É»ñÒæ·Ëdz¡£Îª´Ë£¬Ä¿Ç°Ç¿ÁÒÒªÇóÌṩһÖÖ¼Û¸ñµÍÁ®µÄ¼¼ÊõÀ´¼õÉÙÓÉ×Ô¶¯²âÊÔϵͳ³éÑùµÄÐÅºÅÆµÆ×ÖеÄй©¡£
ΪÁËʵÏÖÉÏÊöÄ¿µÄÒÔ¼°ÆäËûÄ¿µÄºÍÓŵ㣬ÌṩÁËÒ»ÖÖÓÃÓÚ¶Ô³éÑù²¨ÐÎÆµÂʺ¬Á¿½øÐзÖÎöµÄ¼¼Êõ£¬¸Ã¼¼Êõ°üÀ¨¶ÔÔ¤¼ÆÔÚ³éÑù²¨ÐÎÖн«ÒªÇó·¢ÏÖµÄN¸öƵÂʵÄÁÐ±í½øÐлã±à¡£¼Ù¶¨³éÑù²¨ÐÎÓëÒ»²¨ÐÎÄ£ÐÍÒ»Ö£¬¶ø¸Ã²¨ÐÎÄ£ÐÍÔÚÊýѧÉÏÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦¡£N¸öÕýÏÒ²¨Öеĸ÷·½¾ù¾ßÓÐδ֪·ù¶ÈºÍÏà룬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓëÆµÂÊÁбíÖеÄN¸öƵÂÊÖеÄÒ»²»Í¬ÆµÂÊÏàµÈ¡£¸Ã¼¼Êõ¿ÉÇó³öʹģÐÍÓë³éÑùÊý¾Ý×î¼ÑÄâºÏµÄδ֪·ù¶ÈºÍ/»òÏàλ¡£
¸ù¾ÝÒ»¸ö˵Ã÷ÐÔʵʩÀý£¬µ±³éÑùµÄ²¨ÐÎÆµÂÊÊÂÏÈδ֪ʱ£¬Ò²¿ÉʹÓÃÉÏÊö¼¼Êõ¡£¸ù¾Ý¸Ã±äÐÎÀý£¬¿É¶Ô³éÑù²¨ÐνøÐиµÀïÒ¶±ä»»¼ÆË㣬ÒÔÉú³É³£¹æ(rough)¹¦ÂÊÆµÆ×¡£¶Ô¸Ã³£¹æ¹¦ÂÊÆµÆ×ÖеIJ¨·å½øÐÐʶ±ð£¬²¢¶ÔÆäƵÂʽøÐбàÒ룬ÒÔÐγÉN¸öƵÂʵÄÁÐ±í¡£ÔÚ¶ÔN¸öƵÂÊÁÐ±í½øÐбàÒëʱ£¬¿É¿¼ÂÇÆäËûÒòËØ£¬ÀýÈ磬Ïò´ÓÖлñµÃ³éÑùÊý¾ÝµÄ×°ÖÃÊ©¼ÓµÄÒÑÖª¼¤Àø£¬ÒÔ¼°ÆäËû°éËæÇé¿ö¡£È»ºó£¬¶ÔÉú³ÉµÄN¸öƵÂÊÁбíʵʩÉÏÊö¼¼Êõ£¬ÒÔÈ·¶¨N¸öÕýÏÒ²¨Öеĸ÷·½µÄ¾«È··ù¶ÈºÍ/»òÏàλ¡£
Ö÷¼ÆËã»úÒ»°ã°ÑÓÉÊý×Ö»¯ÒÇ116»ñµÃµÄ³éÑùÊý¾Ý´æ´¢ÔÚ´æ´¢Æ÷ÄÚ½øÐзÖÎö¡£²âÊÔ³ÌÐò£¬»òÕß¿ÉÓÃÓÚ²âÊÔ³ÌÐòµÄÈí¼þÀýÐгÌÐò¿É¶Ô´æ´¢µÄ³éÑùÊý¾Ý½øÐвÙ×÷£¬ÒÔ·ÖÎö¸Ã³éÑùÊý¾ÝÄÚÈÝ¡£³£¹æÉÏ£¬²âÊÔ³ÌÐò½«Òýµ¼²âÊÔÒÇÈí¼þ¶Ô³éÑùµÄÊý¾Ý½øÐÐÀëÉ¢¸µÀïÒ¶±ä»»(DFT)¡£È»ºó£¬²âÊÔ³ÌÐò½«¶ÔDFTµÄ½á¹û½øÐвâÊÔ¡£
ͼ2ʾ³öÁ˸ù¾Ý±¾·¢Ã÷µÄÓÃÓÚÔÚATE»·¾³ÖжԲâÊÔÐźŽøÐгéÑùºÍ·ÖÎöµÄÒ»°ã´¦Àí¡£ÔÚ²½Öè210£¬×Ô¶¯²âÊÔϵͳ110ÏòDUT 120µÄÊäÈëÊ©¼Ó¼¤Àø¡£
ÔÚ²½Öè212£¬·ÃÎÊN¸öƵÂÊÁÐ±í¡£¸ÃN¸öƵÂʱíʾ·ù¶ÈºÍ/»òÏàλÐÅÏ¢ÆÚÍûÊÇÒÑÖªµÄ³éÑù²¨ÐÎµÄÆµÂÊ¡£Êý×ÖN¿ÉÒÔÊÇÈκÎÕýÕûÊý¡£²¢²»ÊÇËùÓеÄN¸öƵÂʶ¼Êµ¼ÊÐèÒª´æÔÚÓÚ³éÑù²¨ÐÎÖС£Êµ¼ÊÉÏ£¬¸Ã¼¼Êõ¿ÉÓÃÓڲⶨÈκξßÌ寵ÂÊ·ÖÁ¿µÄÓÐÎÞ¡£ÓÅÑ¡µØÊÇ£¬¸ÃN¸öƵÂÊÁбíÊÂÏÈÊÇÒÑÖªµÄ£¬²¢´æ´¢ÔÚ²âÊÔ³ÌÐòÄÚ¡£
ÔÚ²½Öè214£¬¶Ô³éÑù²¨ÐνøÐмÆËã»ú½¨Ä£¡£±íʾ³éÑù²¨ÐεĸüÆËã»úÄ£ÐÍÓÉ×ܼƵÄN¸öÕýÏÒ²¨¹¹³É£¬ÒÔ½üËÆÓÚʵ¼Ê³éÑù²¨ÐΡ£¸ÃN¸öÕýÏÒ²¨ÖеÄÿ¸ö¾ù²ÉÓÃÒÔϹ«Ê½Aksin(¦Øki)+Bkcos(¦Øki)(¹«Ê½1)ʽÖС¤ ¡°Ak¡±ºÍ¡°Bk¡±ÊÇδ֪ϵÊý£¬¡¤ ¡°k¡±ÊÇ·¶Î§´Ó1µ½NµÄÖ¸Êý£¬²¢±íʾN¸öƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö£¬¡¤ ¦Øk±íʾµÚkƵÂÊ·ÖÁ¿(¾ßÌåµØËµ£¬¦Øk£½2¦ÐFk£¬Ê½ÖУ¬FkÊǵÚkƵÂÊ)£¬ÒÔ¼°¡¤ ¡°i¡±ÊÇʶ±ð¾ßÌå³éÑù²¢±íʾʱ¼äµÄÖ¸Êý¡£
¾¡¹Ü¹«Ê½1¿´ÆðÀ´ÊÇÁ½¸öÕýÏÒ²¨Ö®ºÍ£¬È»¶ø¹«Ê½1ÔÚÊýѧÉϵÈÓÚµ¥¸öÕýÏÒ²¨£¬¸ÃÕýÏÒ²¨µÄƵÂʵÈÓÚ¦Øk/2¦Ð£¬·ù¶ÈµÈÓÚA2k+B2k]]>£¬ÏàλµÈÓÚBkºÍAkµÄ2×Ô±äÁ¿·´ÕýÇС£
¼Ù¶¨¹«Ê½1±íʾ³éÑù²¨ÐÎÖеÄN¸öÕýÏÒ²¨ÖеÄÿ¸ö£¬ÔòÕû¸ö³éÑù²¨ÐοÉʹÓÃÒÔϹ«Ê½À´½¨Ä£Σk=1N(Akcosωki+Bksinωki)]]>(¹«Ê½2)ÔÚ²½Öè216£¬¶Ô¹«Ê½2µÄ²¨ÐÎÄ£ÐͽøÐмÆËã»ú´¦Àí£¬ÒÔ»ñµÃÔÚÄ£ÐͺÍʵ¼Ê³éÑù²¨ÐÎÖ®¼äµÄ×î¼ÑÄâºÏ¡£ÓÅѡʵʩÀý²ÉÓÃÏßÐÔ×îС¶þ³Ë·½¼¼Êõ£¬ÒÔʹģÐÍÓëÊý¾ÝÄâºÏ¡£ÌرðÊÇ£¬²½Öè216ÊÔͼʹÒÔÏÂ×îС¶þ³Ë·½¹À¼ÆÁ¿×îСΣi=0M[yi-Σk=1N(Akcosωki+Bksinωki)]2]]>(¹«Ê½3)ʽÖУ¬yiÊdzéÑù²¨ÐεĵÚi³éÑùµã£¬²¢ÇÒiµÄ·¶Î§´Ó0µ½M£¬ÆäÖУ¬M±íʾ³éÑù²¨ÐÎÖеijéÑù×ÜÊý¡£
ΪÁË×îС»¯¹«Ê½3£¬¸Ã¼¼ÊõÈÏʶµ½£¬µ±¹«Ê½3µÄÆ«µ¼ÊýµÈÓÚÁãʱ£¬¼´µ±¸ù¾ÝAkºÍBkµÄ¸÷Öµ»ñµÃ¹«Ê½3µÄÆ«µ¼Êýʱ£¬¿ÉʵÏÖ×î¼ÑÄâºÏ¡£ÓÉÓÚN¸öƵÂÊÖеÄÿ¸ö¾ù´æÔÚAkºÍBkµÄÖµ£¬Òò¶ø¸ù¾ÝÕâЩAkºÍBkµÄ¸÷Öµ»ñµÃ¹«Ê½3µÄÆ«µ¼Êý£¬¿ÉÉú³É2N·½³Ì×é¡£Σi=0Myicosωji=Σk=1N(AkΣi=0Mcosωkicosωji+BkΣi=0Msinωkicosωji)]]>(¹«Ê½4)Σi=0Myisinωji=Σk=1N(AkΣi=0Mcosωkisinωji+BkΣi=0Msinωkisinωji)]]>(¹«Ê½5)ʽÖУ¬µ±¡°j¡±Ö¸ÊýµÄ·¶Î§´Ó1µ½Nʱ£¬¹«Ê½4ºÍ¹«Ê½5¾ùÖØ¸´N´Î¡£¶¨ÒåÒÔÏÂϵÊý¿É¼ò»¯ËµÃ÷Áîcckj=Σi=0Mcosωkicosωji]]>(¹«Ê½6)
Áîsckj=Σi=0Msinωkicosωji]]>(¹«Ê½7)Áîcskj=Σi=0Mcosωkisinωji]]>(¹«Ê½8)Áîsskj=Σi=0Msinωkisinωji]]>(¹«Ê½9)ÕâЩϵÊý¿ÉÔÚÊýѧÉϼò»¯ÊÇͨ¹ýÈÏʶµ½ÒÔϹ«Ê½cckj=(Σi=0Mcos(ωk+ωj)i+Σi=0Mcos(ωk-ωj)i)/2]]>sckj=cskj=(Σi=0Msin(ωk+ωj)i+Σi=0Msin(ωk-ωj)i)/2]]>sskj=(Σi=0Mcos(ωk+ωj)i-Σi=0Mcos(ωk-ωj)i)/2]]>ÒÔ¼°Σi=0Mcosαi=(cosα(N-1)-cosαN-cosα+1)/2(1-cosα)]]>ºÍΣi=0Msinαi=(sinα(N-1)-sinαN+sinα)/2(1-cosα)]]>ʽÖУ¬¦ÁÊǦصÄÈκÎÈÎÒâÖµ¡£
ʹÓÃÔÚ¹«Ê½6¡«¹«Ê½9Öж¨ÒåµÄϵÊýÀ´ÖØÐ´¹«Ê½4ºÍ¹«Ê½5£¬¿ÉÉú³ÉÒÔϾØÕó (¹«Ê½10)ͨ¹ýÈ·¶¨¾ØÕóXµÄÄæ¾ØÕ󣬲¢°Ñ¸ÃÄæ¾ØÕó³ËÒÔ¹«Ê½10×ó²àµÄʸÁ¿V£¬¿É½â¹«Ê½10ÇóʸÁ¿abÖеÄAkºÍBkµÄÿ¸öÖµ¡£
Ò»µ©¶Ô´Ó1µ½NµÄkµÄÿ¸öÖµµÄAkºÍBkÊÇÒÑÖªµÄ£¬¾Í¿Éͨ¹ý¼ÆËãA2k+B2k]]>À´È·¶¨ÆµÂÊÁбíµÄÿ¸öµÚk¸öƵÂʵķù¶È¡£Í¨¹ý¼ÆËãBkºÍAkµÄ2×Ô±äÁ¿·´ÕýÇУ¬¿ÉÈ·¶¨¸÷ÏàλµÄÖµ¡£
ͨ¹ýÊ©¼ÓÔ¼Êø£¬¼´2N£½M+1(ƵÂÊÊýÊdzéÑùÊýµÄÒ»°ë)£¬¿É¼õÇáһЩͨ¹ý½â¹«Ê½10ËùÊ©¼ÓµÄ¼ÆË㸺µ£¡£Í¨¹ý°Ñ¸ÃÔ¼Êø·ÅÔÚºÏÊÊλÖ㬿ɽ«¹«Ê½10µÄʸÁ¿VÖØÐ´ÈçÏ (¹«Ê½11)ÓÉÓÚÊ©¼ÓÉÏÊöÔ¼Êø»áÆÈʹCºÍX-1³ÉΪͬһÖÈ(rank)µÄ·½ÐξØÕó£¬Òò¶ø¿É°Ñ¹«Ê½10ºÍ¹«Ê½11½øÐÐ×éºÏÒÔÐγÉab£½(X-1C)y (¹«Ê½12)ÕâÑù£¬¿ÉÇó³öab£¬¶øÎÞÐë¼ÆËãV¡£
½¨ÒéʹÓÃÒÔÏ·½·¨Çó³öab¡¤ Ê×ÏÈ£¬Ê¹ÓÃÒÔÏÂµÝ¹é¹ØÏµÀ´¿ìËÙ¹¹½¨Ccos(a+1)¦Øk£½2cos¦Økcosa¦Øk-cos(a-1)¦Øksin(a+1)¦Øk£½2cos¦Øksina¦Øk-sin(a-1)¦Øk¡¤ È»ºó£¬Í¨¹ýL-U·Ö½â£¬¼ÆËãX-1£»¡¤ °ÑX-1Ê©¼ÓÓÚC£»¡¤ ͨ¹ýʹX-1C³ËÒÔyÀ´¼ÆËãab¡£
Ò»µ©¹¹½¨ÁËX-1C£¬¼ÆËãab¾Í¿É´óÖÂÒªÇóN2±¶ÔöÀÛ»ý¡£
ÓÅÑ¡µØÊÇ£¬±¾ÎÄËùÊö¼¼ÊõÊÇ×÷ΪÈí¼þ¿âÖеÄÒ»ÖÖº¯ÊýÀ´ÊµÊ©µÄ¡£¸Ãº¯ÊýÓÅÑ¡µØ½ÓÊÕÊäÈëÕóÁУ¬¸ÃÊäÈëÕóÁд洢ƵÂÊÁбíºÍËùÊö³éÑùÊý¾ÝÖ¸Õë¡£¸Ãº¯ÊýÓÅÑ¡µØ·µ»Ø°üº¬AkºÍBk¸÷ÖµµÄÕóÁУ¬´ÓÖпɼÆËã·ù¶ÈºÍÏàλ¡£»òÕߣ¬¸Ãº¯ÊýÖ±½Ó·µ»Ø·ù¶ÈºÍÏàλ¡£Èí¼þ¿âÓÅÑ¡µØ×¤ÁôÔÚ×Ô¶¯²âÊÔϵͳÉÏ£¬ÔÚ¸Ã×Ô¶¯²âÊÔϵͳÖУ¬¿É·ÃÎÊÔÚ²âÊÔϵͳÖÐÔËÐеIJâÊÔ³ÌÐò¡£
¸÷ͼµÄˮƽÖá±íʾƵÂÊ£¬¾ßÌåµØËµ£¬±íʾƵÂʵã(Bin)0¡«63¡£ÎªÁËÓë²ÉÓÃFFTµÄ·½·¨½øÐÐÖ±½Ó±È½Ï£¬Ê¹ÓÃN£½64À´²Ù×÷×î¼ÑÄâºÏ¼¼Êõ£¬ÆäÖУ¬N¸öƵÂÊÖеÄÿ¸ö¾ùÓëFFTµã(Bin)¶ÔÓ¦¡£´¹Ö±Öá±íʾÒÔdbΪµ¥Î»µÄ·ù¶È¡£
¸÷ͼ¾ùʾ³öÁË´ÓµÚ9ƵÂʵã(Bin)¼´¼´Î´½øÐÐÏà¸É³éÑùµÄƵÂʵã(Bin)µÄÖÐÐÄÂÔ΢ƫбµÄµ¥Òôµ÷¡£ÌرðÊÇ£¬¦Øk£½2¦Ð(k-1)(1+¦Å)£¬Ê½ÖУ¬¶Ôͼ4AÖЦţ½10-6£¬¶Ôͼ4BΪ¦Å£½10-9£¬¶Ôͼ4CΪ¦Å£½10-12¡£ÕâЩͼ¾ù±íÃ÷ÁË×î¼ÑÄâºÏ¼¼ÊõµÄÇ¿¶È¡£ÓëÆäËû¼¼ÊõÏà±È£¬×î¼ÑÄâºÏ¼¼Êõ¿É±£³Ö¼«Õ²¨·å£¬¶øÔÚ²¨·åÖÜΧûÓÐÉý¸ßÇøÓò(¡°È¹²¿¡±)¡£
ÓŵãËù½Òʾ¼¼ÊõÓë³£¹æDFT±ÈÆðÀ´ÓÐÐí¶àÓÅµã£¬ÌØ±ðÊÇÔÚ×Ô¶¯²âÊÔÉ豸·½Ã档ʹÓÃËùÊö¼¼Êõ£¬¿ÉÀûÓü۸ñ½ÏµÍÁ®µÄ²âÊÔÒǵç×Ó×°ÖýøÐи߾«¶ÈƵÆ×·ÖÎö¡£³éÑùʱÖÓÎÞÐèÓë´ý²â¶¨ÆµÂÊÏà¸É£¬²¢¿É´ó´óÏû³ýƵÆ×й©¡£Óë°ÑƵÂÊ·ÖÀàΪ¿í¶ÈÓÐÏ޵ĸ÷µã(Bin)µÄ³£¹æDFTÏà±È£¬Ëù½Òʾ¼¼Êõ²»²ÉÓÃÆµÂʵã(Bin)£¬¶ø²ÉÓÃÀëɢƵÂÊ¡£ÕâÑù£¬Ëù½Òʾ¼¼Êõ¿É°´ÕÕʹÓ󣹿DFTÎÞ·¨ÊµÏֵķ½Ê½À´·Ö±æ¼ä¸ô¼«ÃܵįµÂÊ¡£
¸Ã¼¼Êõ»¹¾ßÓпÉÉý¼¶µÄ£¬ÒòΪÆä¼ÆËãʱ¼äËæ×ÅNµÄº¯Êý£¬¼´´ý·ÖÎöƵÂÊÊý¶ø±ä»¯¡£ÕâÑù£¬Èç¹û½ö·ÖÎöÉÙÁ¿ÆµÂÊ£¬Ôò¿É½Ï¿ìʵʩ¸Ã¼¼Êõ¡£´ËÍ⣬ÓÉÓڸü¼Êõ²ÉÓÃ×î¼ÑÄâºÏËã·¨£¬Òò¶ø¿ÉʹÓøü¼ÊõÀ´È·¶¨ÔÚ³éÑù´°¿ÚÄÚδ³ä·ÖÍê³ÉÒ»¸öÑ»·µÄƵÂÊ·ÖÁ¿µÄ·ù¶ÈºÍÏàλ¡£ÒªÇóÊÂÏȹ涨ƵÂÊ£¬Ò»°ãÔÚ×Ô¶¯²âÊÔÉ豸Öв»»áÆðµ½²»Àû×÷Óã¬ÔÚ¸Ã×Ô¶¯²âÊÔÉ豸ÖУ¬ÓÉDUTÉú³ÉµÄƵÂÊÊÂÏÈÔںܴó³Ì¶ÈÉÏÊÇÒÑÖªµÄ£¬²¢ÇÒ²âÊÔÒÇÉú³ÉÓÃÓÚÇý¶¯DUTµÄ¼¤Àø¡£
¾¡¹ÜX-1CÐèÒª´óÁ¿Ê±¼äÀ´¼ÆË㣬Ȼ¶øÃ¿µ±·ÖÎö²¨ÐÎʱ£¬ÎÞÐè¶ÔÆäÖØÐ¼ÆË㡣ֻҪƵÂÊÁбíºÍ³éÑùÊýM±£³Öºã¶¨£¬¾Í¿Éͨ¹ý¼ìË÷X-1CµÄ´æ´¢¿½±´²¢½«Æä³ËÒÔy£¬¶ÔлñµÃµÄ³éÑùÊý¾Ý½øÐзÖÎö¡£ÌṩµÄ¿â¿É°üÀ¨Õë¶Ô²»Í¬ÆµÂʺͳéÑùÊýµÄ¸÷ÖÖ²»Í¬X-1C×éºÏ¡£Óû§¿É´ÓÕâЩ×éºÏÖнøÐÐÑ¡Ôñ£¬ÒÔ±ã¶Ô²¨ÐνøÐпìËÙ·ÖÎö¡£
Ìæ´úÀýÔÚ¶ÔÒ»¸öʵʩÀý×÷ÁË˵Ã÷Ö®ºó£¬¿É½øÐи÷ÖÖÌæ´úʵʩÀý»ò±ä»¯¡£
ÀýÈ磬ÈçÉÏËùÊö£¬ÔÚ×Ô¶¯²âÊÔÉ豸·½Ãæ¿ÉʹÓóéÑù²¨ÐηÖÎö¼¼Êõ¡£È»¶ø£¬¸Ã¼¼Êõ¿É¸üÆÕ±éµØÊÊÓÃÓÚÆÚÍû½øÐÐÆµÂÊÐÅÏ¢·ÖÎöµÄÈκγéÑùÊý¾Ý¡£¾¡¹Ü¸ù¾Ý
ͼ1µÄ¾ßÌå²âÊÔ·½°¸¶Ô¸Ã¼¼Êõ×÷ÁË˵Ã÷£¬È»¶ø¸Ã¼¼Êõ²»ÏÞÓÚÈκξßÌå²âÊÔ·½°¸¡£
±¾ÎĽÒʾµÄʵʩÀý¶ÔʹÓÃÏßÐÔ×îС¶þ³Ë·½À´»ñµÃÔÚ²¨ÐÎÄ£ÐÍ(¹«Ê½2)ºÍʵ¼Ê³éÑùÊý¾ÝÖ®¼äµÄ×î¼ÑÄâºÏ×÷Á˹涨¡£È»¶ø£¬¿ÉʹÓÃÆäËû×î¼ÑÄâºÏ¼¼Êõ£¬ÀýÈ磬¿ÂÎ÷-ÂåÂ××È(Cauchy-Lorentz)·Ö²¼£¬ÒÔ¼°ÊÔͼʹģÐͺͳéÑùÊý¾ÝÖ®²îµÄ¾ø¶ÔÖµ×îСµÄ¼¼Êõ¡£Òò´Ë£¬±¾·¢Ã÷²»ÏÞÓÚʹÓÃ×îС¶þ³Ë·½¡£
´ËÍ⣬±¾ËµÃ÷»¹ÌṩÁËÓÃÓÚ´¦Àí¾ØÕóºÍÖ´ÐбØÒª¼ÆËãµÄÈí¼þ¡£»òÕߣ¬¿ÉÌṩרÓÃÓ²¼þµç·»ò´¦ÀíÆ÷£¬ÒÔ±ã¸üÓÐЧµØÖ´ÐÐÕâЩ¹¦ÄÜ¡£
ÈçÉÏËùÊö£¬¸Ã¼¼ÊõÒªÇóN¸öƵÂÊÁбíÊÂÏÈÊÇÒÑÖªµÄ¡£È»¶ø£¬¿Éͨ¹ý¶Ô³éÑùÊý¾Ý½øÐÐDFT²¢¼ì²é½á¹ûÀ´±ÜÃâ¸ÃÒªÇó¡£ÕâÖÖ±äÐÎÀýÈçͼ3Ëùʾ¡£ÔÚ²½Öè310£¬½øÐÐDFT¡£ÔÚ²½Öè312£¬ÔÚ´ÓDFTµÃ³öµÄ¹¦ÂÊÆµÆ×ÖÐʶ±ð²¨·å¡£È»ºó£¬°ÑÓ벨·å¶ÔÓ¦µÄƵÂʸ½¼Ó¸øÆµÂÊÁÐ±í£¬ÓÃÓÚ½øÐиü׼ȷµÄ·ÖÎö¡£²½Öè316ºÍ318ÈçÉÏËùÊö½øÐмٶ¨³éÑùÊý¾ÝÓëÄ£ÐÍÒ»Ö£¬²¢ÇÒ»ñµÃÔÚ³éÑùºÍÄ£ÐÍÖ®¼äµÄ×î¼ÑÄâºÏ¡£¸Ã¼¼ÊõÎÞÐèÔÚ¿Õ°×ÖÐ(vacuum)½øÐС£Ò²¿É½«°éËæÇé¿ö¼ÓÒÔ¿¼ÂÇ£¬ÀýÈ磬ʩ¼Ó¸øDUTµÄ¼¤ÀøÆµÂÊ£¬ÕâЩƵÂʵÄг²¨£¬ÒÔ¼°DUTµÄÒÑÖªÌØÐÔ¡£
ÉÏÊö¼¼Êõ¼Ù¶¨°´ÕÕÔÈËÙ½øÐв¨ÐγéÑù¡£È»¶ø£¬¸ù¾ÝÌæ´úʵʩÀý£¬Ò²¿É°´ÕÕ·ÇÔÈËÙ½øÐв¨ÐγéÑù¡£ÌرðÊÇ£¬Óá°ti¡±Ïî(¼´Êµ¼Ê³éÑùʱ¼ä)Ìæ´úÉÏÊö·½³ÌºÍ¾ØÕóÖеÄÀëÉ¢Ö¸Êý¡°i¡±£¬¿ÉʵÏÖÈÎÒâ·Ç¾ùÔȳéÑù¡£¶ÔÓڷǾùÔȳéÑù£¬¿ÉÒÔ²»Ê¹Óù«Ê½9Ö®ºóµÄ¼ÆËã¼ò»¯£»È»¶ø£¬¸Ã±ä»¯¶ÔËùÊö¼¼ÊõµÄÆäÓಿ·ÖÊÇ͸Ã÷µÄ¡£
ÕâÐ©Ìæ´úÀýºÍ±äÐÎÀýÒÔ¼°ÆäËûÀýµÈ¾ùÓɱ¾·¢Ã÷ÈË×÷ÁËÉèÏ룬²¢ÓÃÓÚ°üº¬ÔÚ±¾·¢Ã÷µÄ·¶Î§ÄÚ¡£Òò´Ë£¬Ó¦Àí½âµÄÊÇ£¬ÉÏÊö˵Ã÷½öÊÇ×÷ΪÀý×Ó£¬²¢ÇÒ±¾·¢Ã÷Ó¦½öÓÉËù¸½È¨ÀûÒªÇóµÄ¾«ÉñºÍ·¶Î§À´ÏÞÖÆ¡£
¼ÆËã»úÁбíÒÔÏÂÌṩÁËÓÃÓÚÉú³ÉÕâЩͼ±íµÄÊý¾ÝµÄ²âÊÔ´úÂëµÄÈí¼þÁбí
<pre listing-type="program-listing"> /* standard header files */ #include £¼stdio.h£¾ #include £¼math.h£¾ #include £¼sys/time.h£¾ #include £¼image.h£¾ #define N 128 /* Number of samples of original waveform */ #define M 64 /* Number of frequency bins for least-squares fit routine */ #define M2 (2*M) /* Total number of bins(real£¬and imaginary) */ #define R 32 /* Number of samples to expand by in resampling routine*/ #define F 1024 /* Number of samples infilter in resampling routine*/ double raw_capture[N]£»/* The original samplas*//* These are used in the resampling routine only */double extended_capture[2*N]£¬/* basically raw_capture[]£¬but with extra samples */ expanded_capture[R*N]£¬/* this is (hopefully) equivalent to raw_capture[] */¡¡¡¡/* but with R times as many samples*/ filter£¬ /* uses a cos^2 filter 1024 points */ resampled_capture[N]£» /* this is (hopefully) raw_capture[] but sampled at */¡¡¡¡/* the correct rate*/double Mx[M2][M2]£¬ /* This corresponds to matrix M */ Mi[M2][M2]£¬ /* inverse of matrix M*/ MiC[M2][M2]£¬ /* This is the product of M^-1C */ x[M2]£¬xmags[M]£¬xargs[M]£¬ /* uncorrected dft-mags and phases (arguments)*/ xw[M2]£¬xwmags[M]£¬xwargs[M]£¬/* uncorrected dft with hamming window*/ xs[M2]£¬xsmags[M]£¬xsargs[M]£¬/* resampled dft */ xp[M2]£¬xpmags[M]£¬xpargs[M]£»/* least squares dft *//* Computes sum(cos w*i)i£½0 to n */double sumcos(w£¬n)double w£»{return w £¿ 0.5*(cos(w*(n-1))-cos(w*n)-cos(w)+1)/(1-cos(w)n£»}/* Computes sum(sin w*i) i£½0 to n */double sumsin(w£¬n)double w£»{return w £¿ 0.5*(sin(w*(n-1))-sin(w*n)+sin(w))/(1-cos(w))0£»}/* Makes 1024 point cos^2 filter-used for resampling algorithm *//* This is not used by least squares */make_filter(){int i£» for(i£½0£»i£¼1024£»i++)<dp n="d12"/> filter[i]£½(1-cos(2+M_PI*i/1024))/2£» } /* 1d interpolation routine-used for resampling algorithm.*/ /* Basically Laqrange¡¯s interpolation */ /* This is not used by least squares */ /* tries to return y[a] given y
...y[n-1] as input */ double interpolate_1d(a£¬y£¬n) double a£¬y[]£» int n£» {int k£¬j£¬xl£¬xr£» double product£¬sum£½0£» xl£½ftoi(a-2.0)£» xr£½ftoi(a+2.0)£» xl£½xl£¾£½0£¿xl0£» xr£½xl£¼£½n£¿xrn£» for(k£½xl£»k£¼£½xr£»k++) {product£½y[k]£»¡¡¡¡for(j£½xl£»j£¼£½xr£»j++)¡¡¡¡ if(j£¡£½k)¡¡¡¡ product*£½(a-j)/(k-j)£» sum+£½product£» } return sum£»£ýmain(){int i£¬j£¬k£¬m£» struct timeval tp0£¬tp1£¬tp2£¬tp3£» /* Used for timing */ double f0£½1.0+0.001e-9£» /* Frequency error of 0.001ppb */ gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼N£»i++) raw_capture[i]£½cos(2*M_PI* 9*f0*i/N)£» gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct raw capture£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» for(m£½0£»m£¼M£»m++) {x[2*m]£½x[2*m+1]£½0£» for(i£½0£»i£¼N£»i++) {x[2*m]+£½raw_capture[i]*cos(2*M_PI*m*i/N)£» x[2*m+1]+£½raw_capture[i]*sin(2*M_PI*m*i/N)£» }} gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct £¥i-point uncorrected dft£¥6uus\n¡å£¬M£¬diff(tp1£¬tp0))£» for(i£½0£»i£¼M£»i++) {xmags[i]£½hypot(x[2*i+1]£¬x[2*i+0])/M£» xargs[i]£½180/M_PI*atan2.(x[2*i+1]£¬x[2*i+0])£» £ý/* This section is not least squares fit£¬but is a crude resampling algorithm */#ifdef R gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼2*N£»i++) extended_capture[i]£½cos(2*M_PI* 9*f0*(i-N/2)/N)£» gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct raw capture(with N/2 padding)£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» make_filter()£»<dp n="d13"/> gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct cos^2 filter£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼N*R£»i++) {int e0£½N/2-F/R/2+(i+R-1)/R£» expanded_capture[i]£½0£» for(j£½0£»j£¼F/R£»j++) {int fi£½(N*R-i)£¥R+j*R£» int ej£½e0+j£» expanded_capture[i]+£½filter[fi]*extended_capture[ej]£» }} gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to expand padded capture£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp1£¬NULL)£» for(i£½0£»i£¼N£»i++) resampled_capture[i]£½interpolate_ld(i*R/f0£¬expanded_capture£¬N*R)£» gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to resample from expanded capture£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» for(m£½0£»m£¼M£»m++) {xs[2*m]£½xs[2*m+1]£½0£» for(i£½0£»i£¼N£»i++) {xs[2*m]+£½resampled_capture[i]*cos(2*M_PI*m*i/N)£» xs[2*m+1]+£½resampled_capture[i]*sin(2*M_PI*m*i/N)£» }} gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct £¥i-point resampled dft£¥6uus\n¡å£¬M£¬diff(tp1£¬tp0))£» for(i£½0£»i£¼M£»i++) {xsmags[i]£½hypot(xs[2*i+1]£¬xs[2*i+0])/M£» xsargs[i]£½180/M_PI*atan2(xs[2*i+1]£¬xs[2*i+0])£» £ý#endif/* This section is not least squares fit£¬but instead uses a hanning window */ gettimeofday(&amp;tp0£¬NULL)£» for(m£½0£»m£¼M£»m++) {xw[2*m]£½xw[2*m+1]£½0£» for(i£½0£»i£¼N£»i++) {xw[2*m]+£½raw_capture[i]*cos(2*M_PI*m*i/N)*(1-(1+cos(2*M_PI*i/N))/2)£» xw[2*m+1]+£½raw_capture[i]*sin(2*M_PI*m*i/N)*(1-(1+cos(2*M_PI*i/N))/2)£» }} gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct £¥i-point windowed dft£¥6uus\n¡å£¬M£¬diff(tp1£¬tp0))£» for(i£½0£»i£¼M£»i++) {xwmags[i]£½hypot(xw[2*i+1]£¬xw[2*i+0])/M£» xwargs[i]£½180/M_PI*atan2(xw[2*i+1]£¬xw[2*i+0])£» £ý /* The least-squares section */ gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼M£»i++) for(j£½0£»j£¼M£»j++) {Mx[2*i][2*j]£½0.5*(sumcos(2*M_PI*(i+j)*f0/N£¬N)+sumcos(2*M_PI*(i-j)*f0/N£¬N))£» Mx[2*i][2*j+1]£½0.5*(sumsin(2*M_PI*(i+j)*f0/N£¬N)-sumsin(2*M_PI*(i-j)*f0/N£¬N))£» Mx[2*i+1][2*j]£½0.5*(sumsin(2*M_PI*(i+j)*f0/N£¬N)+sumsin(2*M_PI*(i-j)*f0/N£¬N))£» Mx[2*i+1][2*j+1]£½0.5*(-sumcos(2*M_PI*(i+j)*f0/N£¬N)+sumcos(2*M_PI*(i-j)*f0/N£¬N))£» £ýMx[1][1]£½Mx
£»/* fix that nasty problem with sin */gettimeofday(&amp;tp1£¬NULL)£»printf(¡åTime to construct matrix£¥6uus/n¡å£¬diff(tp1£¬tp0))£»<dp n="d14"/> gettimeofday(&amp;tp0£¬NULL)£» invert2M( )£» gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to invert matrix£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼M2£»i++) for(j£½0£»j£¼M2£»j++) {MiC[i][j]£½0.0£» for(k£½0£»k£¼M£»k++)¡¡¡¡MiC[i][j]+£½Mi[i][2*k]*cos(2*M_PI*k*f0*j/N)+¡¡¡¡Mi[i][2*k+1]*sin(2*M_PI*k*f0*j/N)£» } gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to construct composite matrix£¥6uus\n¡å£¬diff(tp1£¬tp0))£» gettimeofday(&amp;tp0£¬NULL)£» for(i£½0£»i£¼M2£»i++) {xp[i]£½0£» for(j£½0£»j£¼M2£»j++) xp[i]+£½MiC[i][j]*raw_capture[j]£» } gettimeofday(&amp;tp1£¬NULL)£» printf(¡åTime to multiply composite matrix on result£¥6uus\n¡å£¬diff(tp1£¬tp0))£» for(i£½0£»i£¼M£»i++) {xpmags[i]£½hypot(xp[2*i+1]£¬xp[2*i+0])£» xpargs[i]£½180/M_PI*atan2(xp[2*i+1]£¬xp[2*i+0])£»}}/* These matrix inversion routines should be replaced by L-U decomposition *//* These unfortunately use a crude Gauss-Jordon algorithm with no pivoting */initMi( ){int i£¬j£» for(i£½0£»i£¼M2£»i++) for(j£½0£»j£¼M2£»j++)¡¡¡¡Mi[i][j]£½i£½£½j£»}invert2M( ){int i£¬j£» initMi( )£» for(i£½0£»i£¼M2£»i++) {divrow(i£¬Mx[i][i])£» for(j£½i+1£»j£¼M2£»j++) if(Mx[j][i]) {divrow(j£¬Mx[j][i])£»¡¡¡¡decrow(j£¬i)£» } } for(i£½M2-1£»i£»i--) for(j£½i-1£»j£¾£½0£»j--) submultdrow(j£¬Mx[j][i]£¬i)£»}divrow(i£¬denom)int i£»float denom£»{int k£» for(k£½0£»k£¼M2£»k++) {Mx[i][k]/£½denom£» Mi[i][k]/£½denom£»}}<dp n="d15"/>decrow(i£¬j)int i£¬j£»{int k£» for(k£½0£»k£¼M2£»k++) [Mx[i][k]-£½Mx[j][k]£» Mi[i][k]-£½Mi[j][k]£»}}submultdrow(i£¬factor£¬j)int i£¬j£»float factor£»{int k£» for(k£½0£»k£¼M2£»k++) {Mx[i][k]-£½factor*Mx[j][k]£» Mi[i][k]-£½factor*Mi[j][k]£»}}/* returns the difference in microseconds between two timeval structures. */diff(tp1£¬tp0)struct timeval tp0£¬tp1£»{return(tp1.tv_sec-tp0£¬tv_sec)*1000000+tp1.tv_usec-tp0£¬tv_usec£»}/* this makes an ascii file which can be cut and pasted into spreadsheet */write out data_for_msexcel(filename)char *filename£»{int i£» FILE *fp£» fp£½fopen(filename£¬¡åw¡å)£» if(fp) {for(i£½0£»i£¼M£»i++) fprintf(fp£¬¡å£¥4.3f\t£¥4.3f\t£¥4.3f\t£¥4.3f£¥c\n¡å£¬¡¡¡¡ 20*log10(xmags[i])£¬¡¡¡¡ 20*log10(xwmags[i])£¬¡¡¡¡ 20*log10(xsmags[i])£¬¡¡¡¡ 20*log10(xpmags[i])£¬¡¡¡¡ 13)£» fclose(fp)£»}else{fprintf(stderr£¬¡åCould not open output file.\n¡å)£» perror(filename)£»}}</pre>
ȨÀûÒªÇó
1.Ò»ÖÖÓÃÓÚ¶Ô³éÑùÐÅºÅÆµÂÊ·ÖÁ¿½øÐзÖÎöµÄ·½·¨£¬¸Ã·½·¨°üÀ¨ÒÔϲ½Öè(A)Éú³ÉÏëÒªÔÚ³éÑùÐźÅÄÚ½øÐзÖÎöµÄN¸ö²»Í¬ÆµÂÊ·ÖÁ¿µÄÁÐ±í£¬N£¾1£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿ÖеÄÿ¸öƵÂÊÊÇÒÑÖªµÄ£¬²¢ÇÒ·ù¶ÈºÍÏàλÊÇδ֪µÄ£»(B)¶Ô³éÑùÐźŽøÐн¨Ä££¬×÷ΪÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦µÄ²¨ÐÎÄ£ÐÍ£¬N¸öÕýÏÒ²¨ÖеÄÿ¸öÒ²¾ßÓÐδ֪·ù¶ÈºÍÏà룬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓë¶à¸öN¸öƵÂÊ·ÖÁ¿ÖеÄÒ»¸öƵÂÊÏàµÈ£»ÒÔ¼°(C)¶Ô²¨ÐÎÄ£ÐͽøÐд¦Àí£¬ÒÔʹ²¨ÐÎÄ£ÐÍÓë³éÑùÐźÅ×î¼ÑÄâºÏ¡£
2.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄ·½·¨£¬ÆäÖУ¬¶Ô²¨ÐÎÄ£ÐͽøÐмÆËã»ú´¦ÀíµÄ²½ÖèC²ÉÓÃ×îС¶þ³Ë·½Ëã·¨£¬ÓÃÓÚʹ²¨ÐÎÄ£ÐÍÓë³éÑùÐźÅÄâºÏ¡£
3.¸ù¾ÝȨÀûÒªÇó2ËùÊöµÄ·½·¨£¬ÆäÖУ¬N¸öÕýÏÒ²¨ÖеÄÿ¸ö¾ù¿É²ÉÓù«Ê½Aksin¦Øki+Bkcos¦ØkiÀ´±íʾ£¬Ê½ÖУ¬¡°Ak¡±ºÍ¡°Bk¡±ÊÇδ֪ϵÊý£¬¡°k¡±ÊÇ·¶Î§´Ó1µ½NµÄÖ¸Êý£¬²¢±íʾN¸öƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö£¬¦Øk¶ÔÓ¦ÓÚµÚkƵÂÊ·ÖÁ¿£¬ÒÔ¼°¡°i¡±ÊÇʶ±ð¾ßÌå³éÑù²¢±íʾʱ¼äµÄÖ¸Êý¡£
4.¸ù¾ÝȨÀûÒªÇó3ËùÊöµÄ·½·¨£¬ÆäÖУ¬¶Ô²¨ÐÎÄ£ÐͽøÐд¦ÀíµÄ²½ÖèCʹ¹À¼ÆÁ¿×îС£¬¸Ã¹À¼ÆÁ¿¿É±íʾΪΣi=0M[yi-Σk=1N(Akcosωki+Bksinωki)]2]]>ʽÖУ¬¡°M¡±±íʾ¹¹³É³éÑù²¨ÐεijéÑùÊý£¬ÒÔ¼°¡°yi¡±±íʾÔÚ³éÑù²¨ÐÎÇé¿öϵĵÚiµã¡£
5.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄ·½·¨£¬¸Ã·½·¨½øÒ»²½°üÀ¨Çó³öN¸öƵÂÊ·ÖÁ¿µÄδ֪·ù¶ÈºÍÏàλÖеÄÖÁÉÙÒ»¸ö¡£
6.¸ù¾ÝȨÀûÒªÇó5ËùÊöµÄ·½·¨£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿µÄ¸÷µÚkƵÂÊ·ÖÁ¿µÄ·ù¶È¿É±íʾΪA2k+B2k]]>
7.¸ù¾ÝȨÀûÒªÇó5ËùÊöµÄ·½·¨£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿µÄ¸÷µÚkƵÂÊ·ÖÁ¿µÄÏàλ¿É±íʾΪBkºÍAkµÄ2×Ô±äÁ¿·´ÕýÇС£
8.Ò»ÖÖÔÚ×Ô¶¯²âÊÔϵͳÖжÔÔÚ²âÉ豸½øÐвâÊԵķ½·¨£¬¸Ã·½·¨°üÀ¨ÒÔϲ½Öè(A)°Ñ¼¤ÀøÐźÅÊ©¼Ó¸øÔÚ²âÉ豸£»(B)´ÓÔÚ²âÉ豸ÖнøÐÐÏìÓ¦ÐźųéÑù£»(C)Éú³ÉÏëÒªÔÚ³éÑùÏìÓ¦ÐźÅÄÚ½øÐзÖÎöµÄN²»Í¬ÆµÂÊ·ÖÁ¿µÄÁÐ±í£¬N£¾1£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿Öеĸ÷·½µÄƵÂÊÊÇÒÑÖªµÄ£¬²¢ÇÒ·ù¶ÈºÍÏàλÊÇδ֪µÄ£»(D)¶Ô³éÑùÐźŽøÐмÆËã»ú½¨Ä££¬×÷ΪÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦µÄ²¨ÐÎÄ£ÐÍ£¬N¸öÕýÏÒ²¨ÖеÄÿ¸öÒ²¾ßÓÐδ֪·ù¶ÈºÍÏà룬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓë¶à¸öNƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö²»Í¬ÆµÂÊÏàµÈ£»(E)¶Ô²¨ÐÎÄ£ÐͽøÐмÆËã»ú´¦Àí£¬ÒÔʹ²¨ÐÎÄ£ÐÍÓë³éÑùÐźÅ×î¼ÑÄâºÏ£»ÒÔ¼°(F)Çó³öNƵÂÊ·ÖÁ¿µÄδ֪·ù¶ÈºÍÏàλÖеÄÖÁÉÙÒ»·½¡£
9.¸ù¾ÝȨÀûÒªÇó8ËùÊöµÄ·½·¨£¬ÆäÖУ¬¸ÃÉ豸ÊÇ×÷ΪÆäÖÆÔ칤ÒÕµÄÒ»²¿·Ö¶ø²âÊԵģ¬ÓÃÓÚÈ·±£ÆäÔÚ×°ÔËǰµÄÖÊÁ¿¡£
10.¸ù¾ÝȨÀûÒªÇó8ËùÊöµÄ·½·¨£¬ÆäÖУ¬Éú³ÉN¸ö²»Í¬ÆµÂÊ·ÖÁ¿µÄÁбíµÄ²½ÖèC°üÀ¨ÏòÊ©¼Ó¸øÔÚ²âÉ豸µÄ¼¤ÀøÐÅºÅµÄÆµÂÊÌṩN¸öƵÂÊ·ÖÁ¿ÁÐ±í¡£
11.¸ù¾ÝȨÀûÒªÇó10ËùÊöµÄ·½·¨£¬¸Ã·½·¨½øÒ»²½°üÀ¨ÏòÊ©¼Ó¸øÔÚ²âÉ豸µÄ¼¤ÀøÐÅºÅµÄÆµÂʵÄг²¨ÌṩNƵÂÊ·ÖÁ¿ÁÐ±í¡£
12.¸ù¾ÝȨÀûÒªÇó8ËùÊöµÄ·½·¨£¬ÆäÖУ¬Éú³ÉN¸ö²»Í¬ÆµÂÊ·ÖÁ¿ÁбíµÄ²½ÖèC°üÀ¨¶Ô³éÑùµÄÏìÓ¦ÐźŽøÐÐÀëÉ¢¸µÀïÒ¶±ä»»(DFT)£»Ê¶±ðDFTÖеIJ¨·å£»ÒÔ¼°°ÑÓëDFTÖеIJ¨·å»ù±¾ÏàµÈµÄƵÂʸ½¼Ó¸øN¸öƵÂÊ·ÖÁ¿ÁÐ±í¡£
13.ÔÚ×Ô¶¯²âÊÔϵͳÖУ¬Ò»ÖÖÓÃÓÚ¶Ô²âÊÔÐÅºÅÆµÂʺ¬Á¿½øÐзÖÎöµÄÉ豸£¬¸ÃÉ豸°üÀ¨Êý×Ö»¯ÒÇ£¬ÓÃÓÚ´ÓÔÚ²âÉ豸ÖнøÐвâÊÔÐźųéÑù£»´æ´¢Æ÷£¬ÓÃÓÚ´æ´¢ÏëÒªÔÚ³éÑùÐźÅÄÚ½øÐзÖÎöµÄN¸ö²»Í¬ÆµÂÊ·ÖÁ¿µÄÁÐ±í£¬N£¾1£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿ÖеÄÿ¸öƵÂÊÊÇÒÑÖªµÄ£¬²¢ÇÒ·ù¶ÈºÍÏàλÊÇδ֪µÄ£»¼ÆËã»ú½¨Ä£Èí¼þ£¬ÓÃÓÚ¶Ô³éÑùÐźŽøÐмÆËã»ú½¨Ä££¬×÷ΪÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦µÄ²¨ÐÎÄ£ÐÍ£¬N¸öÕýÏÒ²¨ÖеÄÿ¸öÒ²¾ßÓÐδ֪·ù¶ÈºÍÏà룬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓë¶à¸öNƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö²»Í¬ÆµÂÊÏàµÈ£»ÒÔ¼°¼ÆËã»ú´¦ÀíÈí¼þ£¬ÓÃÓÚ¶Ô²¨ÐÎÄ£ÐͽøÐмÆËã»ú´¦Àí£¬ÒÔʹ²¨ÐÎÄ£ÐÍÓë³éÑùÐźÅ×î¼ÑÄâºÏ¡£
14.¸ù¾ÝȨÀûÒªÇó13ËùÊöµÄÉ豸£¬½øÒ»²½°üÀ¨²âÊÔ³ÌÐò£¬¸Ã²âÊÔ³ÌÐòÔÚ×Ô¶¯²âÊÔϵͳÉÏÔËÐУ¬²¢ÔÚNƵÂÊÁбíÖй涨ƵÂÊ¡£
15.¸ù¾ÝȨÀûÒªÇó13ËùÊöµÄÉ豸£¬ÆäÖУ¬¼ÆËã»ú½¨Ä£Èí¼þºÍ¼ÆËã»ú´¦ÀíÈí¼þפÁôÔÚÈí¼þ¿âÄÚ£¬¸ÃÈí¼þ¿âÓɲ»Í¬²âÊÔ³ÌÐòÀ´·ÃÎÊ£¬ÓÃÓÚ·ÖÎö³éÑùµÄ²¨ÐΡ£
16.¸ù¾ÝȨÀûÒªÇó13ËùÊöµÄÉ豸£¬ÆäÖУ¬¼ÆËã»ú´¦ÀíÈí¼þ²ÉÓÃ×îС¶þ³Ë·½Ëã·¨£¬ÓÃÓÚʹ²¨ÐÎÄ£ÐÍÓë³éÑùÏìÓ¦ÐźÅÄâºÏ¡£
17.¸ù¾ÝȨÀûÒªÇó16ËùÊöµÄÉ豸£¬ÆäÖУ¬N¸öÕýÏÒ²¨ÖеÄÿ¸ö¾ù¿É²ÉÓù«Ê½Aksin¦Øki+Bkcos¦ØkiÀ´±íʾ£¬Ê½ÖУ¬¡°Ak¡±ºÍ¡°Bk¡±ÊÇδ֪ϵÊý£¬¡°k¡±ÊÇ·¶Î§´Ó1µ½NµÄÖ¸Êý£¬²¢±íʾNƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö£¬¦Øk¶ÔÓ¦µÚkƵÂÊ·ÖÁ¿£¬ÒÔ¼°¡°i¡±ÊDZíʾʱ¼äµÄÖ¸Êý¡£
18.¸ù¾ÝȨÀûÒªÇó17ËùÊöµÄÉ豸£¬ÆäÖУ¬¼ÆËã»ú´¦ÀíÈí¼þʹ¹À¼ÆÁ¿×îС£¬¸Ã¹À¼ÆÁ¿¿É±íʾΪΣi=0M[yi-Σk=1N(Akcosωki+Bksinωki)]2]]>ʽÖУ¬¡°M¡±±íʾ¹¹³É³éÑù²¨ÐεijéÑùÊý£¬ÒÔ¼°¡°yi¡±±íʾÔÚ³éÑù²¨ÐÎÇé¿öϵĵÚiµã¡£
19.ÔÚ×Ô¶¯²âÊÔϵͳÖУ¬Ò»ÖÖÓÃÓÚ¶Ô²âÊÔÐÅºÅÆµÂʺ¬Á¿½øÐзÖÎöµÄÉ豸£¬¸ÃÉ豸°üÀ¨Êý×Ö»¯ÒÇ£¬ÓÃÓÚ´ÓÔÚ²âÉ豸ÖнøÐвâÊÔÐźųéÑù£»´æ´¢×°Öã¬ÓÃÓÚ´æ´¢ÏëÒªÔÚ³éÑùÐźÅÄÚ½øÐзÖÎöµÄN¸ö²»Í¬ÆµÂÊ·ÖÁ¿µÄÁÐ±í£¬N£¾1£¬ÆäÖУ¬N¸öƵÂÊ·ÖÁ¿ÖеÄÿ¸öƵÂÊÊÇÒÑÖªµÄ£¬²¢ÇÒ·ù¶ÈºÍÏàλÊÇδ֪µÄ£»½¨Ä£×°Öã¬ÓÃÓÚ¶Ô³éÑùÐźŽøÐн¨Ä££¬×÷ΪÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦µÄ²¨ÐÎÄ£ÐÍ£¬N¸öÕýÏÒ²¨ÖеÄÿ¸öÒ²¾ßÓÐδ֪·ù¶ÈºÍÏà룬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓë¶à¸öNƵÂÊ·ÖÁ¿ÖеÄÒ»¸ö²»Í¬ÆµÂÊÏàµÈ£»ÒÔ¼°´¦Àí×°Öã¬ÓÃÓÚ¶Ô²¨ÐÎÄ£ÐͽøÐд¦Àí£¬ÒÔʹ²¨ÐÎÄ£ÐÍÓë³éÑùÐźÅ×î¼ÑÄâºÏ¡£
20.¸ù¾ÝȨÀûÒªÇó19ËùÊöµÄÉ豸£¬ÆäÖУ¬½¨Ä£×°Öúʹ¦Àí×°ÖÃפÁôÔÚÈí¼þ¿âÄÚ£¬¸ÃÈí¼þ¿âÓɲ»Í¬²âÊÔ³ÌÐòÀ´·ÃÎÊ£¬ÓÃÓÚ·ÖÎö³éÑù²¨ÐΡ£
21.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄ·½·¨£¬ÆäÖУ¬³éÑùÐźŰ´ÕÕ·ÇÔÈËÙ½øÐгéÑù¡£
È«ÎÄÕªÒª
±¾·¢Ã÷ÌṩÁËÒ»ÖÖ¼¼Êõ£¬ÓÃÓÚ¶Ô´Ó×Ô¶¯²âÊÔϵͳÖгéÑùµÄ²¨ÐÎµÄÆµÂÊ·ÖÁ¿µÄ·ù¶È½øÐÐÈ·¶¨£¬¸Ã¼¼Êõ°üÀ¨¶ÔÔ¤¼ÆÔÚ³éÑù²¨ÐÎÖз¢ÏÖµÄN¸öƵÂʵÄÁÐ±í½øÐлã±à¡£ÔÚ²âÊÔÒÇÉÏÔËÐеIJâÊÔ³ÌÐòͨ³£ÌṩƵÂÊÁÐ±í¡£¸Ã¼¼Êõ¼Ù¶¨³éÑù²¨ÐÎÓëÀíÏ뻯²¨ÐÎÄ£ÐÍÒ»Ö£¬¶ø¸ÃÀíÏ뻯²¨ÐÎÄ£ÐÍÔÚÊýѧÉÏÓëN¸öÕýÏÒ²¨Ö®ºÍ¶ÔÓ¦¡£¹¹³É¸ÃÄ£Ð͵ÄN¸öÕýÏÒ²¨ÖеÄÿ¸ö¾ù¾ßÓÐδ֪·ù¶È£¬²¢¾ßÓÐһƵÂÊ£¬¸ÃƵÂÊÓëÆµÂÊÁбíÖеÄN¸öƵÂÊÖеÄÒ»¸öÏàµÈ¡£¸Ã¼¼ÊõÊÔͼÔÚÊýѧÉÏͨ¹ýÏßÐÔ×îС¶þ³Ë·½Ë㷨ʹģÐÍÓëʵ¼Ê³éÑù²¨ÐÎÖ®²î×îС£¬´Ó¶øÇó³öNƵÂÊÖеĸ÷·½µÄδ֪·ù¶È¡£
Îĵµ±àºÅG01R23/16GK1464979SQ02802241
¹«¿ªÈÕ2003Äê12ÔÂ31ÈÕ ÉêÇëÈÕÆÚ2002Äê6ÔÂ24ÈÕ ÓÅÏÈȨÈÕ2001Äê6ÔÂ29ÈÕ
·¢Ã÷Õ߸ñÀ׸êÀïE¡¤µÏÎÌ ÉêÇëÈË:Ì©À¶¡¹«Ë¾