רÀûÃû³Æ£ºÒ»ÖÖµþǰÉî¶ÈÆ«ÒÆ·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°µØÕð¿±Ì½ÁìÓò£¬¾ßÌåµÄÊÇÖ¸Ò»ÖÖµþǰÉî¶ÈÆ«ÒÆ·½·¨¡£
±³¾°¼¼Êõ£º
Æ«ÒÆÊǵØÕðÊý¾Ý´¦ÀíµÄ×îºóÒ»¸ö²½Ö裬ҲÊÇ×îÖØÒª¡¢¹Ø¼üµÄÒ»¸ö¹ý³Ì£¬¶ÔÓÚ¸´Ô µØÏ½éÖʶøÑÔ¸üÊÇÈç´Ë¡£ÓÉÓÚµØÏ½éÖʲãλµÄ·ÇˮƽÐÔ£¬Ôì³ÉÁ˵ØÕðµþ¼ÓÆÊÃæ²¢²»ÄÜ·´Ó³ÕæÊµµÄ²ãλÐΠ̬£¬Òò´ËÐèÒª¶ÔµØÕðÊý¾ÝÔÚµþ¼ÓµÄ»ù´¡ÉϽøÒ»²½½øÐÐÆ«ÒÆ´¦Àí£¬Ð£ÕýÓÉÓڵزãÇã½Ç´æÔÚËù ²úÉúµÄ²ãλ·´ÉäµÄ¼ÙÏóÊ±ÒÆ£¬Ê¹µØÏ²ãλµÄ·´Éä¹é룬·´Ó³µØ²ãµÄÕæÊµÆð·üÐÎ̬ºÍ²ú×´¡£Æ«ÒÆ´¦Àí·½·¨·ÖΪÁ½À࣬һÀàÔÚµþ¼ÓµÄ»ù´¡ÉϽøÐУ¬³ÆÎªµþºóÆ«ÒÆ£»Ò»ÀàÔÚµþ¼Óǰ ½øÐÐÆ«ÒÆ´¦Àí£¬³ÆÎªµþÇ°Æ«ÒÆ¡£µþÇ°Æ«ÒÆ¾«¶ÈÒª¸ßÓÚµþºóÆ«ÒÆ£¬¶Ô¸´ÔÓÈÆÉ䲨µÄ¹éλÄÜÁ¦½Ï ºÃ£»µ«µþÇ°Æ«ÒÆ´¦ÀíÐèÒªµÄ¼ÆË㹤×÷Á¿ºÜ´ó£¬Ëæ×ŽüÊ®¶àÄêÀ´¼ÆËã»ú¼¼ÊõµÄÌá¸ß¶øµÃµ½ÁË ¹ã·ºµÄ·¢Õ¹ºÍÓ¦Óá£ÆäÖеþÇ°Æ«ÒÆ´¦Àí°´ÕÕÆ«ÒÆ·½·¨µÄ²»Í¬£¬Ö÷ÒªÊÇ·½·¨ËùÔÚµÄʱ¿ÕÓòµÄ ²îÒ죬·ÖΪµþǰʱ¼äÆ«ÒÆºÍµþǰÉî¶ÈÆ«ÒÆ¡£µþǰÉî¶ÈÆ«ÒÆÓÉÓÚÊä³öÆÊÃæÖ±½Ó·´Ó³ÕæÊµ¿Õ¼ä Éî¶ÈÓòµÄµØÏ½éÖÊÐÎ̬¶øÔÚÓ¦ÓÃÁìÓòµÃµ½¸ü´óµÄ¹Ø×¢¡£Ä¿Ç°Òµ½ç¹ØÓÚ¶à·ÖÁ¿µØÕðÊý¾ÝµÄµþǰÉî¶ÈÆ«ÒÆÑо¿·Ç³£ÉÙ£¬Ïà¶Ô³ÉÊìÓ¦ÓõϹÊÇ µþºóʱ¼äÆ«ÒÆ¡£¶à·ÖÁ¿µØÕðÊý¾ÝµÄµþÇ°Æ«ÒÆ´¦ÀíÊÇĿǰµØÕð¿±Ì½ÁìÓòµÄ¹¥¹ØÈȵãºÍÄѵ㣬 ¶øÇÒµ±Ç°Ñо¿Óë³¢ÊÔÓ¦Óû¹´ó¶à¾ÖÏÞÓÚµþǰʱ¼äÆ«ÒÆ£¬Ò²Ô¶Ã»ÓÐ×ßÈëÉú²úʵ¼ùÓ¦ÓÃÖС£¶ø ÇҴ󲿷ÖÑо¿»¹¾ÖÏÞÓÚÔÚ×ݲ¨Æ«ÒƵĻù´¡ÉÏ£¬ÑØÓÃÓë´¿×ݲ¨Æ«ÒÆÏàͬµÄ˼·½øÐÐC²¨»òµÈ Чת»»²¨µÄÆ«ÒÆ´¦Àí£¬½«¶à·ÖÁ¿µØÕðÐźżäµÄ¿Õ¼äʸÁ¿¹ØÏµÍêÈ«¸îÁÑ¿ªÀ´£¬½øÐе¥´¿²¨µÄ Æ«ÒÆ´¦Àí£¬¼ÈËðʧÁ˲¨³¡ÖÐÔ̺¬µÄ·á¸»µØÏ½éÖÊÐÅÏ¢£¬³ÉÏñЧ¹ûÒ²½Ï²î¡£Ó¢¹ú°®¶¡±¤´óѧµÄÀîÏòÑô½ÌÊÚËùÁìµ¼µÄÑо¿Ð¡×é(Hengchang Dai£¬and Xiang-Yang Li. Effect of errors in the migration velocity model of PS-converted waves on traveltime accuracy in prestack Kirchhoff time migration in weak anisotropic media.Geophysics,2008,73 (5) :S195_S205) (Xiang-Yang Li£¬Jianxin Yuan.Converted¡ªwave moveout and conversion-point equations in layered VTI media :Theory and applications. Journal of Applied Geophysics£¬2003£¬34 :297_318) ³õ²½ÊÔÑé³É¹¦Á˶à·ÖÁ¿×ª»»²¨µÄµþǰʱ¼äÆ«ÒÆ¼¼Êõ£¬ÔÚһЩµØÇøµÄ¶à·ÖÁ¿µØÕð¿±Ì½Öгõ²½ ÊÔÑéºÍÓ¦Ó㬵«ÉÐÐè½øÒ»²½¹¥¹ØÍêÉÆ¡£´ËÍ⣬´÷ºÍÀîÕë¶ÔÈõ¸÷ÏòÒìÐÔ½éÖÊת»»ºá²¨µþǰʱ ¼äÆ«ÒÆÖÐËÙ¶È¶ÔÆ«Òƽá¹ûµÄÓ°Ïì½øÐÐÊýֵģÄâºÍÎó²îµÄÌÖÂÛ¡£ËûÃÇ·Ö±ðÌÖÂÛÁËת»»ºá²¨ ËÙ¶È¡¢´¹ÏòËٶȱȡ¢ÓÐЧËٶȱȡ¢¸÷ÏòÒìÐÔ²ÎÊýµÄ¾«¶È¶ÔÂÃÐÐʱ¼ÆËãÎó²îµÄ¹±Ï×£¬¶ÔÓÚʱ¼ä Óòת»»²¨µÄ³ÉÏñÌá¸ß¾ßÓнϺõIJο¼¼ÛÖµ£»ÇÒһЩ˼·¿ÉÒÔΪת»»²¨µÄµþǰÉî¶ÈÆ«ÒÆËù½è ¼ø¡£ÉÏÊÀ¼Í80 Äê´úÍõÃîÔÂÔÚ Kuo (Kuo£¬J. T.£¬and Dai£¬T.£¬1984£¬Kirchhoff elastic wave migration for the case of non-coincident source and receiver :Geophysics, 49 (8)£¬1223-1238)µÄ»ù´¡ÉÏ×îÔçÌá³öÁËʸÁ¿Æ«ÒƵÄ˼Ï룬²¢ÍƳöÁ˵¯ÐÔ²¨Kirchhoff»ý·Ö¹«Ê½(ÇØ¸£ºÆ¡¢¹ùÑÇêØ¡¢ÍõÃîÔ£¬µ¯ÐÔ²¨¿ËÏ£»ô·ò»ý·ÖÆ«ÒÆ·¨£¬µØÇòÎïÀíѧ±¨£¬1988£¬31(5) 577-587)¡£ÕâÊÇÒ»ÖÖ¾ù„ò¸÷ÏòͬÐÔ½éÖʼÙÉèϵĵ¯ÐÔ²¨µÄ¶à·ÖÁ¿Í¬Ê±Æ«ÒÆ·½·¨£¬Í¨¹ýPP¡¢ PS²¨µÄ×ßʱ½«¶þ·ÖÁ¿µÄÊý¾ÝÄæÊ±ÑÓÍØµ½µØÏ³ÉÏñµã£¬µÃµ½Ã¿¸ö³ÉÏñµã¸Õ¸Õ±»¼¤·¢Ê±µÄÈý¸ö ·ÖÁ¿ÉϵÄÕñ¶¯ÐÎʽ¡£Í¨¹ýÊýֵģÄâµÄºÏ³ÉµØÕð¼Ç¼£¬ËûÃǶԸ÷½·¨½øÐÐÁ˲âÊÔ£¬»ñµÃÏà¶Ô½Ï ºÃµÄ½á¹û£¬ÔÚÕâÒ»·½Ïò½øÐÐÁ˳õ²½µÄ̽Ë÷£¬µ«½ØÖÁĿǰûÓнøÒ»²½µÄ·¢Õ¹¡£¸Ã·½·¨ÓÐÒÔÏÂÁ½¸ö²»×ã1)µÃµ½µÄÊÇ×ܵĶþ¸ö·ÖÁ¿Õñ¶¯ÄÜÁ¿£¬Ã»ÓÐʵÏÖ²¨³¡·Ö À룻2)¸Ã·½·¨µÃµ½µÄÆ«ÒÆ½á¹ûÊÇijһÅÚµãµÄÄÜÁ¿´«²¥µ½¶ÔÓÚµØÏ·´Éä½çÃæÊ±¼¤·¢µÄÕ𶯡£ ²»Í¬ÅÚµã¶ÔÓÚµØÏÂͬһ·´Éäµã¼¤·¢Ê±µÄÕñ¶¯Ê¸Á¿²»Ïàͬ£¬Òò´Ë²»ÄÜÓÃÓÚ¶àÅڼǼµÄµþ¼Ó¡£ ¶øÇÒËûÃǵÄÑо¿ÊÇÒ»ÖÖ½üËÆµÄµþǰÉî¶ÈÆ«ÒÆ£¬¼´ÔÚÆ«Òƹý³ÌÖÐÈÔÈ»ÔÚʱ¼äÓò½øÐУ¬Ö»ÊǺó À´½øÐÐʱ-Éîת»»°ÑÊä³öµÄÆ«ÒÆÆÊÃæ×ª»»³ÉÉî¶ÈÆÊÃæ¡£¶øÇÒ¶ÔÓÚ×ßʱµÄ¼ÆËãËûÃÇֻͣÁôÔÚ µ¥½çÃæÖ±ÉäÏß×·×ÙÕâÒ»²ãÃæ£¬¶ÔÓÚ²»Í¬µÄÉî¶È³ÉÏñҲûÓп¼Âǵ½Æ«Òƿ׾¶µÄ²îÒì£¬Æ«ÒÆËÙ ¶ÈµÄ»ñµÃÏà¶Ô¼òµ¥£¬Ö»ÊǼòµ¥½èÓõþ¼ÓËÙ¶ÈÈ»ºó½øÐвãËٶȵĻ»Ë㣬Òò¶øÐ§¹û²¢²»ÀíÏë¡£¹«¿ªºÅΪUS 2009/0257308A1µÄ·¢Ã÷רÀû±£»¤Æ«ÒÆËÙ¶È·ÖÎöÁìÓòµÄÒ»ÖÖ¼¼Êõ£¬¸Ã ¼¼Êõ»ùÓÚ¶¯Ð£ÕýÎó²îÀ´²»¶ÏµÄ¸üÐÂËÙ¶ÈÄ£ÐÍ£¬´Ó¶øÊ¹µÃ×îÖÕµÄËÙ¶ÈÄ£ÐͱƽüÓÚµØÏ½éÖÊµÄ ÕæÊµËÙ¶È¡£¸ÃרÀûÊÇ»ùÓÚÊ£ÓàÇúÂÊ·ÖÎö·½·¨µÄËÙ¶È·ÖÎö¼¼Êõ£¬¶øÇҸü¼Êõ»ùÓÚСÅÚ¼ì¾à¼Ù ÉèºÍˮƽ²ãλ½éÖʼÙÉ裬¼´ÒªÇóÊ£ÓàÂÃÐÐʱ¿ÉÒÔ½üËÆÎªË«ÇúÏß»òÅ×ÎïÏß¡£¶øµ±ËٶȺáÏò±ä »¯¾çÁÒ»ò´óÅÚ¼ì¾àÇé¿öÏ£¬¸Ã¼¼ÊõËù»ùÓÚµÄËã·¨½üËÆ²»ºÏÊʵģ»¶øÇÒ¸ÃרÀû¼¼ÊõÖ»Õë¶Ô³£ ¹æ×ݲ¨Êý¾ÝºÍ×ݲ¨ËٶȽøÐд¦Àí·ÖÎö¡£ØÁÑ©¶¬µÈ(ØÁÑ©¶¬¡¢¼Ö¹â»ª¡¢ÙÚÕ×Æç£¬Kirchhoffµþǰʱ¼äÆ«ÒÆ´¦Àí¼¼Êõ¼°Ó¦Óã¬Îï ̽»¯Ì½¼ÆËã¼¼Êõ£¬2009£¬31 (2) 126-130)Ñо¿µÄÊÇÕë¶Ô³£¹æ×ݲ¨×ÊÁÏ´¦ÀíµÄµþǰʱ¼äÆ«ÒÆ ¼¼Êõ¼°ÆäÓ¦Óã¬ÕâÒ»¼¼ÊõÔÚÓÍÆøµØÕð¿±Ì½ÁìÓòÒÑÊdzÉÊìÓ¦Óõġ¢ÉÌÒµ»¯µÄÉú²ú¼¼Êõ¡£ ÕÅÃ͵È(ÕÅÃÍ¡¢ÃÏÏé±ö¡¢¿ï±óµÈ£¬»ý·Ö·¨µþǰÉî¶ÈÆ«ÒÆ¼¼ÊõÔÚBS6µØÇøµÄÓ¦Ó㬿±Ì½ µØÇòÎïÀí½øÕ¹£¬2009£¬32(1) 48-55)½éÉܵÄÊdzÉÊìµÄ¡¢ÉÌÒµ»¯Ó¦Óõij£¹æ×ݲ¨µØÕðÊý¾ÝµÄ µþǰÉî¶ÈÆ«ÒÆ¼¼Êõ¼°ÆäÈí¼þ¶ÔʤÀûÓÍÌïÄ³Çø¿éµÄµØÕðÊý¾Ý½øÐд¦ÀíÊÔÑéºÍÓ¦Ó㬲¢Óë³£¹æ ×ݲ¨µÄµþºóÆ«ÒÆ(ʱ¼ä)½øÐгÉÏñЧ¹ûµÄ¶Ô±È£¬´Ó¶øËµÃ÷µþǰÉî¶ÈÆ«ÒÆµÄÓÅÊÆºÍÓ¦ÓÃЧ¹û¡£Ò¶ÔÂÃ÷µÈ(Ò¶ÔÂÃ÷¡¢ÀîÕñ´º¡¢ÙÚÕ×Æç£¬»ùÓÚÎȶ¨³ÉÏñÌõ¼þµÄ±£·ùµþǰÉî¶ÈÆ«ÒÆ£¬Ê¯ Ó͵ØÇòÎïÀí¿±Ì½£¬2009£¬44(1) 28-32)Ö÷ÒªÕë¶Ô³£¹æ×ݲ¨µþǰÉî¶ÈÆ«ÒÆ´¦ÀíÖÐ×èÄáÐÍ·´ñÞ »ý´¦Àí´æÔÚµÄÎÊÌ⣬½«·ÖĸÇ÷ÓÚÁãʱËùÒýÆðµÄ¼ÆËã²»Îȶ¨ÏÖÏóͨ¹ý¸ß˹ƽ»¬´¦Àí£¬Ìá¸ßÆ« ÒÆ´¦ÀíµÄ¼ÆËãÎȶ¨ÐÔ£¬²¢Í¬Ê±´ïµ½²¿·ÖѹÔëµÄÄ¿µÄ¡£ÉÏÊöÓйؼ¼ÊõËùÕë¶ÔµÄµØÕðÊý¾Ý¶¼Êǵ¥·ÖÁ¿¡¢³£¹æ×ݲ¨Êý¾Ý£¬ÎÞÒ»Éæ¼°¶à·ÖÁ¿µØ ÕðÊý¾ÝµÄ´¦Àí£¬ËùÉæ¼°µÄ¼¼ÊõÓëÀíÂÛ·½·¨Ò²²»ÊÊÓÃÓÚÈý·ÖÁ¿µØÕðÊý¾ÝµÄ´¦Àí¡£¹«¿ªºÅΪCN 101598805AµÄ·¢Ã÷רÀûÖ»ÊÇÕë¶Ô×ݲ¨Óëת»»ºá²¨´«²¥Ê±¼äµÄ²îÒ죬 ͨ¹ýËٶȱÈɨÃèºÍ²ãλ׷×ٵķ½·¨£¬½«Í¬Ò»²ãλÔÚ×ݲ¨Óëת»»ºá²¨ÆÊÃæµÄ²»Í¬·´ÉäÏàλ½ø Ðб궨¡¢Ê°È¡£¬´Ó¶ø½«¸÷¶ÔÓ¦ÏàλµÄ×ݺᲨËٶȱÈÈ·¶¨ÏÂÀ´£¬½ø¶øÊµÏÖ½«×ª»»ºá²¨ÆÊÃæ°´ÕÕ ×ݲ¨´«²¥Ê±¼äѹËõ£¬Ê¹µÃÔÚÏàͬµÄ×ݲ¨´«²¥Ê±¼ä±ê¶ÈÉÏ£¬·½±ã×ݲ¨Óëת»»ºá²¨µÄ²ãλ¶Ô±È¡£ Æä±£»¤µÄÄÚÈݲ¢²»Éæ¼°Èý·ÖÁ¿µØÕðÊý¾ÝµÄ³ÉÏñ¼¼Êõ¡£¹«¿ªºÅΪCN 1797031AµÄ·¢Ã÷רÀûÕë¶Ô³£¹æ×ݲ¨Êý¾ÝµÄµþǰÉî¶ÈÆ«ÒÆ´¦ÀíÖÐÓÉ ÓÚº£Á¿Êý¾Ý´¦ÀíºÄʱ¡¢¼ÆËãЧÂʵ͵ÄÎÊÌ⣬ͨ¹ýÏàͬÏàλÅ򵀮¥ÅäºÍ×éºÏ£¬ÊµÏÖ¶àÅںϲ¢Ò» ÅÚ£¬´Ó¶ø¼õÉÙÆ«ÒÆ´¦ÀíµÄÅÚ¼¯Êý£¬ÔÚ²»ËðÉËÆ«ÒÆÐ§¹ûµÄ»ù´¡ÉÏʵÏÖÆ«ÒÆ´¦ÀíЧÂʵÄÌá¸ß¡£Æä±£»¤µÄÄÚÈݲ»Éæ¼°Èý·ÖÁ¿µØÕðÊý¾ÝµÄ³ÉÏñ¼¼Êõ¡£¹«¿ªºÅΪCN 101419292AµÄ·¢Ã÷רÀû±£»¤µÄÄÚÈÝÊÇÕë¶ÔÈý·ÖÁ¿²É¼¯µÄµØÕðÊý¾Ý£¬ ͨ¹ýµþǰԤ´¦Àí¡¢¾²Ð£Õý¡¢ËÙ¶È·ÖÎö¡¢¶¯Ð£Õý¡¢µþ¼ÓÕâÑùÒ»¸ö³£¹æµÄ´¦ÀíÁ÷³Ì¶Ôת»»ºá²¨½ø Ðд¦Àí³ÉÏñ¡£¸ÃרÀû±£»¤µÄÄÚÈÝÔÚÈý·ÖÁ¿µØÕðÊý¾Ý´¦ÀíÁìÓòÒ»°ãÓÖ³ÆÎª³£¹æµþºó´¦Àí·½ ·¨£¬½öÉæ¼°Ê±¼äÆ«ÒÆ¼¼Êõ¡£¹«¿ªºÅΪUS 2004/0117123A1µÄ·¢Ã÷רÀû±£»¤µÄÄÚÈÝÊÇÕë¶Ô³£¹æ´¿×ݲ¨Êý¾ÝµÄ µþǰʱ¼äÆ«ÒÆ´¦Àí¼¼Êõ£¬¶øÇҸü¼ÊõÊÇÔÚÆµÂÊ_²¨ÊýÓòʵÏֵġ£¸ÃרÀûÊǽ«µØÕðÊý¾Ý±ä»» µ½ÆµÂÊ-²¨ÊýÓò£¬È»ºó¸ù¾ÝÂÃÐÐ×ßʱͼ¶Ô¸ø¶¨¿Õ¼äÈÎÒ»µãµÄÉäÏß²ÎÊý½øÐÐÏàÒÆµÄÏßÐÔÄâºÏ ʹµÃµþǰʱ¼äÆ«ÒÆËã·¨ÊÊÓ¦ËٶȵĺáÏò±ä»¯¾çÁҵĸ´ÔÓ½éÖʳÉÏñÎÊÌâ¡£¹«¿ªºÅΪUS 2010/0054082A1µÄ·¢Ã÷רÀû±£»¤µÄÄÚÈݲ»Éæ¼°¾ßÌåµÄÆ«ÒÆËã·¨£¬¸ü Óë¶à·ÖÁ¿µþǰÉî¶ÈÆ«ÒÆÎ޹ء£ÔÚÈÎºÎÆ«Òƹý³ÌÖоùÉæ¼°²¨³¡µÄÄ£Ä⣬Æä²¢²»ÊÇͨ¹ýÉäÏß×· ×Ù×ßʱ¼ÆËãÍê³ÉµÄ£¬¶øÊÇͨ¹ýÉù²¨·½³ÌµÄÓÐÏÞ²î·ÖÄ£ÄâʵÏÖ¡£¸ÃרÀûÖ÷ÒªÕë¶ÔµþÇ°ÄæÊ±Æ« ÒÆ´¦ÀíÖÐÐèÒª´æ´¢¿Õ¼äÈÎÒ»µãµÄ²¨³¡¶øÔì³ÉÆ«ÒÆ´¦ÀíÖÐÄÚ´æÓëÓ²Å̿ռäµÄ´óÁ¿ÏûºÄÎÊÌ⣬ ÇÒʹµÃÆ«ÒÆÐ§ÂʵÍÏ£¬Îª´ËÌá³öÒ»ÖÖ½ÚÊ¡¼ÆËã»úÄÚ´æÓëÓ²Å̿ռäµÄ¼¼Êõ¸Ä½ø´ëÊ©£¬¼´ÔÚÕý Ñݲ¨³¡µÄÄ£ÄâÖÐÖ»±£´æ×迹½çÃæµãÉϵIJ¨³¡Öµ£¬ÆäËû¿Õ¼äµã²»²ÎÓë¼ÆË㣬´Ó¶ø´ó´ó¸Ä½øÁË Æ«ÒÆ´¦ÀíµÄËÙ¶È£¬½µµÍÁ˼ÆËã×ÊÔ´µÄÏûºÄ¡£µþǰÉî¶ÈÆ«ÒÆÊÇ¶Ô´óµØ²ãÇã½ÇºÍËٶȺáÏò±ä»¯¾çÁҵĸ´ÔÓ¹¹Ôì³ÉÏñµÄÓÐЧ¹¤¾ß¡£ µ«ÊǵþǰÉî¶ÈÆ«ÒÆÒÀÀµ¸ü¾«È·µÄËÙ¶ÈÄ£ÐÍ¡£³£¹æµÄËٶȽ¨Ä£·½·¨ÎÞ·¨´ïµ½×ã¹»µÄ¾«¶È¡£Í¬ ʱ£¬ÒòΪµþǰÉî¶ÈÆ«ÒÆ¶ÔËÙ¶ÈÄ£ÐÍÊ®·ÖÃô¸Ð£¬ËùÒÔËü×÷ΪһÖÖÓÐÁ¦µÄËÙ¶È·ÖÎö¹¤¾ß£¬·¢Õ¹³ö ÁËÁ½ÖÖÆ«ÒÆËÙ¶È·ÖÎö·½·¨Éî¶È¾Û½¹·ÖÎö(DFA£¬depth-focusing analysis)ºÍÊ£ÓàÇúÂÊ·Ö Îö(RCA£¬residual-curvature analysis)¡£Òª½øÐÐÆ«ÒÆËÙ¶È·ÖÎö¾Í±ØÐë½â¾öÁ½¸öÎÊÌâ1) ½¨Á¢Ò»¸öÆÀ¼ÛËÙ¶ÈÊÇ·ñ׼ȷµÄ±ê×¼£»2)ÈçºÎ½øÐÐËٶȸüС£Éî¶È¾Û½¹·ÖÎöµÄÔÀíÊǸù¾Ýµþ¼ÓÄÜÁ¿²âÁ¿ËÙ¶ÈÎó²î¡£µ±Æ«ÒÆÉî¶ÈºÍ¾Û½¹Éî¶ÈÏàͬ ʱ£¬ËÙ¶È´ïµ½ÒªÇó¡£Ê£ÓàÇúÂÊ·ÖÎöÊǸù¾ÝÊ£ÓàÂÃÐÐʱ²î²âÁ¿ËÙ¶ÈÎó²î¡£µ±²»Í¬ÅÚ¼ì¾àµÄ³É ÏñÉî¶ÈÏàͬʱ£¬ËÙ¶È´ïµ½ÒªÇó¡£ÒòΪËÙ¶È·ÖÎöͨ³£ÊÇ»ùÓÚÒ»¸ö´Ö²ÚµÄ³õʼµü´úËÙ¶È£¬Òò´ËÒ»¸ö½¡×³µÄËÙ¶È·ÖÎö·½ ·¨ÔÚ¼õÉÙµü´ú´ÎÊýµÄͬʱ»¹Òª±£Ö¤ËٶȵÄÊÕÁ²ÐÔ¡£´«Í³µÄËÙ¶È·ÖÎö·½·¨£¬Í¨³£ÊÇ»ùÓÚÒÔÏ Èý¸ö¼ÙÉè¢Ù²ã×´¾ù„ò½éÖÊ£»¢ÚСÅÚ¼ì¾à£»¢ÛˮƽµØ²ã¡£MacKayºÌ¿ÚAbma(MacKay S. and Abma R. Imaging and velocity estimation with depth-focusing analysis. Geophysics. 1992,57 :1608_1622)µÄ DFA ·½·¨Óõ½ÁËÈ«²¿ÒÔÉÏ Èý¸ö½üËÆ¡£ÔÚRCAÖУ¬ËÙ¶È·ÖÎöʱËù²ÉÓÃµÄÆ«ÒÆ·½·¨²»Í¬£¬»ùÓڵļÙÉèÒ²²»Í¬1.¹²ÅÚµã»ò ^Wlk^M^ Al-Yahay (Al-Yahya K. 1989. Velocity analysis by iterative profile migration, Geophysics, 1989£¬54 :718_729)Ìá³öµÄ·½·¨»ùÓÚÒÔÉÏÈý¸ö¼ÙÉ裻LeeºÍ Zhang (Lee W. and Zhang L. Residual shot profile migration, Geophysics,1992,57 815-822)µÄ·½·¨½«µÚÈý¸ö¼ÙÉèÍØÕ¹µ½Ð¡Çã½Ç¡£2.¹²ÅÚ¼ì¾àÆ«ÒÆ=Deregowski (Deregowsiki S.M. Common-offset migration and velocity analysis.First Break,1990,8 (6) 225-234)µÄ·½·¨Ê¹ÓÃÁËǰÁ½¸ö¼ÙÉè¡£ÒÔÉϵķ½·¨¶¼»ùÓÚСÅÚ¼ì¾à¼ÙÉ裬ÔÚСÅÚ¼ì¾àÇé¿öÏ£¬Ê£ÓàÂÃÐÐʱ¿ÉÒÔ½üËÆÎªË«ÇúÏß»òÅ×ÎïÏß¡£µ±ËٶȺáÏò±ä»¯¾çÁÒʱ£¬Ê¹ÓÃÕâ¸ö½üËÆÊDz»ºÏÊʵġ£Òò´Ë£¬Liu (Liu Z. and Bleistein N. Migration velocity analysisi Theory and an iterative algorithm£¬ Geophysics£¬1995£¬60 :142-153)ÔÚ Lafond ºÌ¿Ú Levander(Lafond C.F. and Levander A. R. Migration moveout analysis and depth focusing£¬Geophysics£¬1993£¬58 :91_100) µÄ»ù´¡ÉÏÌá³öÁËÒ»ÖÖеÄRCA·½·¨¡ª¡ª»ùÓÚÉî¶È¾Û½¹µÄ¹²³ÉÏñµãËÙ¶È·ÖÎö·½·¨£¬ÕâÖÖ·½·¨ ÊÊÓÃÓÚÈκÎÅÚ¼ì¾à¡¢Çã½ÇºÍËٶȱ仯¡£
·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷ËùÒª½â¾öµÄ¼¼ÊõÎÊÌâÊÇÕë¶Ô¶à·ÖÁ¿µØÕðÊý¾Ý£¬ÌṩһÖÖ»ùÓÚʸÁ¿²¨³¡µÄÈý ·ÖÁ¿µþǰÉî¶ÈÆ«ÒÆ·½·¨£¬²»ÐèÒª½øÐв¨³¡·ÖÀ룬²¢ÊµÏÖ¶à·ÖÁ¿Æ«ÒÆ£¬ÊµÏÖת»»²¨µÄ׼ȷ¹é λ¡£±¾·¢Ã÷½â¾öÉÏÊö¼¼ÊõÎÊÌâµÄ¼¼Êõ·½°¸ÈçÏÂÒ»ÖÖµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬°üÀ¨ÒÔϲ½ Öè²½Öè1¡¢¶ÔµØÕðÊý¾Ý½øÐÐÆ«ÒÆËÙ¶È·ÖÎö£»²½Öè2¡¢Í¨¹ýÉäÏß×·×Ù¼ÆËã×ßʱ¡¢»¡³¤¡¢³öÉä½Ç¡¢ÈëÉä½Ç£»²½Öè3¡¢½øÐÐÆ«Òƿ׾¶¼ÆË㣻²½Öè4¡¢ÀûÓÃKirchhofT»ý·Ö·¨Ê¸Á¿Æ«Òƹ«Ê½½øÐеþǰÉî¶ÈÆ«ÒÆ¡£±¾·¢Ã÷µÄÓÐÒæÐ§¹ûÊDZ¾·½·¨½«Æ«ÒÆËÙ¶È·ÖÎö¡¢Æ«Òƿ׾¶Ñ¡È¡¡¢ÉäÏß×·×Ù¡¢ Kirchhoff»ý·Ö¹«Ê½½áºÏÓÚÒ»Ì壬²»ÐèÒª½øÐв¨³¡·ÖÀ룬²¢ÊµÏÖ¶à·ÖÁ¿Æ«ÒÆ£¬ÊµÏÖת»»²¨µÄ ׼ȷ¹éλ¡£ÔÚÉÏÊö¼¼Êõ·½°¸µÄ»ù´¡ÉÏ£¬±¾·¢Ã÷»¹¿ÉÒÔ×öÈçϸĽø¡£½øÒ»²½£¬²½Öè1ÖÐËùÊöÆ«ÒÆËÙ¶È·ÖÎö²ÉÓûùÓÚÉî¶È¾Û½¹µÄ¹²³ÉÏñµãËÙ¶È·ÖÎö·½ ·¨¡£²ÉÓÃÉÏÊö½øÒ»²½·½°¸µÄÓÐÒæÐ§¹ûÊÇ£¬»ùÓÚÉî¶È¾Û½¹µÄ¹²³ÉÏñµãËÙ¶È·ÖÎö·½·¨ÊÇÔÚ Ê£ÓàÇúÂÊ·ÖÎö·½·¨ÉÏÐ޸Ķø³É£¬ÆäÊÕÁ²Ëٶȿ죬ÊÊÓÃÓÚ¸÷ÖÖËÙ¶ÈÄ£ÐͺÍÅÚ¼ì¾à¡£½øÒ»²½£¬ËùÊö²½Öè1°üÀ¨Èçϲ½Öè²½Öèal¡¢³õʼµØÖÊÄ£ÐÍ£¬²¢½øÈë²½Öèa2 £»²½Öèa2¡¢½¨Á¢³õʼËÙ¶ÈÄ£ÐÍ£¬²¢½øÈë²½Öèa3 £»²½Öèa3¡¢½øÐлùÓÚÄ¿±ê²ãλµ×½çÃæµÄPSDM(pre_stack depth migration£¬µþǰÉî ¶ÈÆ«ÒÆ)£¬²¢½øÈë²½Öèa4;²½Öèa4¡¢½øÐÐÆ«ÒÆËÙ¶È·ÖÎö£¬²¢½øÈë²½Öèa5 £»²½Öèa5¡¢ÅжÏÊÇ·ñ½¨Á¢ÁËÍêÕûµÄËÙ¶ÈÄ£ÐÍ£¬Èç¹ûΪ¡°ÊÇ¡±Ôò½øÈë²½Öè2£¬Èç¹ûΪ¡°·ñ¡± Ôò½øÈë²½Öèa6 £»²½Öèa6¡¢½øÐлùÓÚÄ¿±ê²ãλµ×½çÃæµÄPSDM£¬²¢½øÈë²½Öèa7 £»²½Öèa7¡¢Ê°È¡Ä¿±ê²ãµ×½çÃæ£¬²¢½øÈë²½Öèa8 £»²½Öèa8¡¢¸üÐÂËÙ¶ÈÄ£ÐÍ£¬½«Ä¿±ê²ãÒÆÖÁÏÂÒ»²ã룬²¢½øÈë²½Öèa3¡£ÆäÖУ¬²½Öèa5ÖÐËùÊöÍêÕûµÄËÙ¶ÈÄ£ÐÍΪ´Ódzµ½Éî¸÷²ãλÆëÈ«µÄÒÔËÙ¶È¡¢Ãܶȡ¢²ã λÂñÉî×÷Ϊ²ÎÊýµÄµØÕðµØÖÊÄ£ÐÍ¡£½øÒ»²½£¬²½Öè2ÖУ¬²ÉÓÃÖ±ÉäÏß×·×Ù·¨»òÕß²ÉÓûùÓÚ·ÑÂíÔÀíµÄ×îС×ßʱÉäÏß×·×Ù·¨¡£²ÉÓÃÉÏÊö½øÒ»²½·½°¸µÄÓÐÒæÐ§¹ûÊÇ£¬²ÉÓÃÖ±ÉäÏß×·×Ù·¨¼ÆËãËٶȿ죬²ÉÓûùÓÚ·Ñ ÂíÔÀíµÄ×îС×ßʱÉäÏß×·×Ù·¨¿ÉÒÔ±ÜÃâÉäÏßÃ¤Çø¡£½øÒ»²½£¬²½Öè4ÖвÉÓÃÊÊÓÃÓڷǾù„ò¸÷ÏòÒìÐÔ½éÖʵĵ¯ÐÔ²¨Kirchhoff»ý·Ö·¨Ê¸ Á¿Æ«Òƹ«Ê½½øÐеþǰÉî¶ÈÆ«ÒÆ¡£²ÉÓÃÉÏÊö½øÒ»²½·½°¸µÄÓÐÒæÐ§¹ûÊÇ£¬ÊÊÓÃÓڷǾù„ò¸÷ÏòÒìÐÔ½éÖʵĵ¯ÐÔ²¨ Kirchhoff»ý·Ö·¨Ê¸Á¿Æ«Òƹ«Ê½£¬¾ßÓв¨³¡·ÖÀëµÄÌØÐÔ£¬¿ÉÒÔ×öµ½Æ«ÒƵÄͬʱ·ÖÀëPP²¨ ºÍPS²¨£»Æ«Òƽá¹û¿É·Ö±ðÊä³öPP²¨ÆÊÃæºÍPS²¨ÆÊÃæ£¬ÀûÓÚ·Ö±ð·ÖÎöPP²¨ºÍPS²¨µÄ AVO(Amplitude Versus Offset£¬Õñ·ùËæÆ«ÒÆ¾àµÄ±ä»¯)ÌØÕ÷£»Ê¹ÓÃÁ˵¯ÐÔ²¨¶¯·½³ÌµÄ¸ñÁÖ º¯Êý£¬Ìá¸ßËã·¨µÄ±£·ùÐÔ£»ÊÊÓÃÓڷǾù„ò¸÷ÏòÒìÐÔ½éÖÊ¡£±¾·¢Ã÷ÔÚÍõÃîÔµÈÈË(ÇØ¸£ºÆ¡¢¹ùÑÇêØ¡¢ÍõÃîÔ£¬µ¯ÐÔ²¨¿ËÏ£»ô·ò»ý·ÖÆ«ÒÆ·¨£¬µØ ÇòÎïÀíѧ±¨£¬1988£¬31 (5) 577-587)Ñо¿µÄ»ù´¡ÉÏÍÆ³öÐÂµÄÆ«Òƹ«Ê½£¬²¢Õë¶ÔÆäËù´æÔÚµÄ Á½¸ö²»×ã½øÐиĽø¡£ÔÚÆ«Òƹý³ÌÖÐÖ±½ÓÊä³öPP²¨ºÍPS²¨£¬ÔÚ½øÐжàÅÚµþ¼ÓµÄʱºòʵÏÖÁË Ïà¸É¼ÓÇ¿µÄЧ¹û£¬µÃµ½PPºÍPS²¨µÄÆÊÃæ¡£
ͼ1Ϊ±¾·¢Ã÷µþǰÉî¶ÈÆ«ÒÆ·½·¨µÄÔÀíͼһ£»Í¼2Ϊ±¾·¢Ã÷µþǰÉî¶ÈÆ«ÒÆ·½·¨µÄÔÀíͼ¶þ £»Í¼3Ϊ±¾·¢Ã÷µþǰÉî¶ÈÆ«ÒÆ·½·¨µÄÔÀíͼÈý£»Í¼4Ϊ±¾·¢Ã÷µþǰÉî¶ÈÆ«ÒÆ·½·¨µÄÁ÷³Ìͼ£»Í¼5Ϊ±¾·¢Ã÷ÖÐÆ«ÒÆËÙ¶È·ÖÎöµÄʵÏÖÁ÷³Ì£»Í¼6AΪ²ÉÓûùÓÚ¹²CCP (Common Converted Point£¬¹²×ª»»µã)µÀ¼¯µÄµþºóʱ¼äÆ« ÒÆ·½·¨¶Ô´óÇìÒ»Ìõ2D3CµØÕðÊý¾Ý½øÐÐÆ«ÒÆÖ®ºóµÄPP²¨Ð§¹ûͼ£»Í¼6BΪ²ÉÓûùÓÚ¹²CCPµÀ¼¯µÄµþºóʱ¼äÆ«ÒÆ·½·¨¶Ô´óÇìÒ»Ìõ2D3CµØÕðÊý¾Ý½øÐÐ Æ«ÒÆÖ®ºóµÄPS²¨Ð§¹ûͼ£»Í¼7AΪ²ÉÓñ¾·¢Ã÷·½·¨¶Ô´óÇìµÄÒ»Ìõ2D3CµØÕðÊý¾Ý½øÐÐµÄÆ«ÒÆ´¦ÀíÖ®ºóµÄPP ²¨Ð§¹ûͼ£»Í¼7BΪ²ÉÓñ¾·¢Ã÷·½·¨¶Ô´óÇìµÄÒ»Ìõ2D3CµØÕðÊý¾Ý½øÐÐµÄÆ«ÒÆ´¦ÀíÖ®ºóµÄPS ²¨Ð§¹ûͼ£»Í¼8Ϊ±¾·¢Ã÷µþǰÉî¶ÈÆ«ÒÆ·½·¨µÄÄ£ÄâÊý¾ÝÄ£ÐÍ£»Í¼9AΪͼ8µÄÊý¾ÝÄ£Ð͵ĵØÕðÊý¾ÝZ·ÖÁ¿¼Ç¼ͼ£»Í¼9BΪͼ8µÄÊý¾ÝÄ£Ð͵ĵØÕðÊý¾ÝX·ÖÁ¿¼Ç¼ͼ£»Í¼10Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓñ¾·¢Ã÷µÄµþǰÉî¶ÈÆ«ÒÆ·½·¨µÃµ½µÄ×ݲ¨Æ«ÒÆÉî¶È ÆÊÃæ½á¹û£»Í¼11Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓñ¾·¢Ã÷µÄµþǰÉî¶ÈÆ«ÒÆ·½·¨µÃµ½µÄת»»ºá²¨Æ«ÒÆ Éî¶ÈÆÊÃæ½á¹û£»Í¼12Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓÃÉù²¨·½³ÌÆ«ÒÆ²¢ËæÇã½Ç¿ª¿×¾¶µÃµ½µÄ×ݲ¨Æ«ÒÆÉî ¶ÈÆÊÃæ½á¹û£»Í¼13Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓÃÉù²¨·½³ÌÆ«ÒÆ²¢ËæÇã½Ç¿ª¿×¾¶µÃµ½µÄת»»ºá²¨Æ«ÒÆÉî¶ÈÆÊÃæ½á¹û£»Í¼14Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓÃÉù²¨·½³ÌÆ«ÒÆ²¢¹Ì¶¨¿×¾¶µÃµ½µÄ×ݲ¨Æ«ÒÆÉî¶ÈÆÊ Ãæ½á¹û£»Í¼15Ϊͼ8µÄÊý¾ÝÄ£ÐÍÖвÉÓÃÉù²¨·½³ÌÆ«ÒÆ²¢¹Ì¶¨¿×¾¶µÃµ½µÄת»»ºá²¨Æ«ÒÆÉî ¶ÈÆÊÃæ½á¹û¡£
¾ßÌåʵʩÀý·½Ê½ÒÔϽáºÏ¸½Í¼¶Ô±¾·¢Ã÷µÄÔÀíºÍÌØÕ÷½øÐÐÃèÊö£¬Ëù¾ÙʵÀýÖ»ÓÃÓÚ½âÊͱ¾·¢Ã÷£¬²¢ ·ÇÓÃÓÚÏÞ¶¨±¾·¢Ã÷µÄ·¶Î§¡£·½·¨ÔÀíÈçͼ1Ëùʾ£¬¾ù„ò¸÷ÏòͬÐÔ½éÖʵÄÈýάʸÁ¿²¨³¡ÑÓÍØ·½³ÌΪ
'[(1 - ) Sm3Pn + Iv2PJnP, ] X iim (x', t + tP )/(r Vp ) +(^3 + s^L - 2rJnr3) ¦Ö um (x',t + ts )/(rVs ) Hv )Tim(x\t + tP)/(prVP2) +(¡¶ -V,)T3m(^t + ts)/(prVs2)
1 OO OO
>dx{dxf2 ÆäÖзç
'fl^
(1)
¡·±íʾÖʵãÎ»ÒÆ£¬µ¥Î»Îªm/s £»,t)±íʾÖʵãËÙ¶È£¬µ¥Î»m ;T(x'
±íʾӦÁ¦£¬µ¥Î»ÎªN/m2 £»m, ¦Ç = 1,2,3·Ö±ð±íʾx£¬y£¬¦Æ×ø±ê£¬µ¥Î»m £»f = f/rΪµ¥Î»Ê¸¾¶£¬ fm, fs·Ö±ð±íʾÉäÏß³öÉä½ÇµÄµ¥Î»ÏòÁ¿ÔÚm¡¢n×ø±êÉϵÄͶӰ£»t = t(x|x')±íʾÕðÔ´µ½ µØÏÂÈÆÉäµãµÄ×ßʱ£¬µ¥Î»Îªs ;tp¡¢ts·Ö±ð´ú±íÈÆÉäµãµ½½ÓÊÕµãµÄPP²¨¡¢PS²¨×ßʱ£¬µ¥Î»Îªs r±íÊ¾ÈÆÉäµãµ½½ÓÊÕµãµÄ¾àÀ룬µ¥Î»Îªm £»Vp¡¢Vs·Ö±ð±íʾ×Ý¡¢ºá²¨ËÙ¶È£¬µ¥Î»Îªm/s £»¦Í = Vs/ Vp±íʾ×ݺᲨËٶȱȡ£ ÓÉÓÚ×ÔÓɱíÃæ±ß½çÌõ¼þ£¬µØ±íÓ¦Á¦ÎªÁ㣬·½³Ì(1)µÄºóÁ½Ïî¿ÉÒÔÉáÈ¥£¬ÓÐ
'[(1 ~ 2v2)Sm,rn + 2vXrnr, ] ¦Ö um (x',t + tP)/(rVPj
1 OO QQ
>dx\dx\
(2)½«´Ë·½³ÌÕ¹¿ª£¬½«Èý¸ö·ÖÁ¿ÉϵÄÄÜÁ¿·Ö±ðͶӰµ½PP·ÖÁ¿(3)ʽºÍPS·ÖÁ¿(4)ʽ ÉÏ£¬Èçͼ2ËùʾUpp = U1Cos ¦È sin ¦µ +u2sin ¦È sin ¦µ +u3cos ¦µ (3)Ups = U1Cos ¦È cos ¦µ +u2sin ¦È cos ¦µ +u3sin ¦µ (4)½«¢ÆÊ½Õ¹¿ªºó´øÈë¢Çʽ¡¢¢Èʽ£¬µÃ
1 CO OO
uPP(x,y,z,t) = ¡ª f f 4¦Ð
2v2frIv2Pr
¡ªf^ ¡ö ux(x',y',0,t + tp) +. uy(x',y',0,t + tp)
rVprVp
\-Iv2+Iv2Kfz¡¢
+--¡ª ¡¤ u2 (x', y, o,/+/P)
rVP
dx'dy
\J 5 /fv
8
ȨÀûÒªÇó
Ò»ÖÖµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬°üÀ¨ÒÔϲ½Öè²½Öè1¡¢¶ÔµØÕðÊý¾Ý½øÐÐÆ«ÒÆËÙ¶È·ÖÎö£»²½Öè2¡¢Í¨¹ýÉäÏß×·×Ù¼ÆËã×ßʱ¡¢»¡³¤¡¢³öÉä½Ç¡¢ÈëÉä½Ç£»²½Öè3¡¢½øÐÐÆ«Òƿ׾¶¼ÆË㣻²½Öè4¡¢ÀûÓÃKirchhoff»ý·Ö·¨Ê¸Á¿Æ«Òƹ«Ê½½øÐеþǰÉî¶ÈÆ«ÒÆ¡£
2.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ²½Öè1ÖÐËùÊöÆ«ÒÆËÙ¶È·Ö Îö²ÉÓûùÓÚÉî¶È¾Û½¹µÄ¹²³ÉÏñµãËÙ¶È·ÖÎö·½·¨¡£
3.¸ù¾ÝȨÀûÒªÇó2ËùÊöµÄµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊö²½Öè1°üÀ¨Èçϲ½Öè ²½Öèal¡¢³õʼµØÖÊÄ£ÐÍ£¬²¢½øÈë²½Öèa2 £»²½Öèa2¡¢½¨Á¢³õʼËÙ¶ÈÄ£ÐÍ£¬²¢½øÈë²½Öèa3 £»²½Öèa3¡¢½øÐлùÓÚÄ¿±ê²ãλµ×½çÃæµÄµþǰÉî¶ÈÆ«ÒÆ£¬²¢½øÈë²½Öèa4 £»²½Öèa4¡¢½øÐÐÆ«ÒÆËÙ¶È·ÖÎö£¬²¢½øÈë²½Öèa5 £»²½Öèa5¡¢ÅжÏÊÇ·ñ½¨Á¢ÁËÍêÕûµÄËÙ¶ÈÄ£ÐÍ£¬Èç¹ûΪ¡°ÊÇ¡±Ôò½øÈë²½Öè2£¬Èç¹ûΪ¡°·ñ¡±Ôò ½øÈë²½Öèa6 £»²½Öèa6¡¢½øÐлùÓÚÄ¿±ê²ãλµ×½çÃæµÄµþǰÉî¶ÈÆ«ÒÆ£¬²¢½øÈë²½Öèa7 £»²½Öèa7¡¢Ê°È¡Ä¿±ê²ãµ×½çÃæ£¬²¢½øÈë²½Öèa8 £»²½Öèa8¡¢¸üÐÂËÙ¶ÈÄ£ÐÍ£¬½«Ä¿±ê²ãÒÆÖÁÏÂÒ»²ã룬²¢½øÈë²½Öèa3¡£
4.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ²½Öè2ÖУ¬²ÉÓÃÖ±ÉäÏß×·×Ù ·¨»òÕß²ÉÓûùÓÚ·ÑÂíÔÀíµÄ×îС×ßʱÉäÏß×·×Ù·¨¡£
5.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ²½Öè4ÖвÉÓÃÊÊÓÃÓڷǾù „ò¸÷ÏòÒìÐÔ½éÖʵĵ¯ÐÔ²¨KirchhofT»ý·Ö·¨Ê¸Á¿Æ«Òƹ«Ê½½øÐеþǰÉî¶ÈÆ«ÒÆ¡£
È«ÎÄÕªÒª
±¾·¢Ã÷Éæ¼°µØÕð¿±Ì½ÁìÓò£¬¾ßÌåµÄÊÇÖ¸Ò»ÖÖµþǰÉî¶ÈÆ«ÒÆ·½·¨¡£¸Ã·½·¨°üÀ¨¶ÔµØÕðÊý¾Ý½øÐÐÆ«ÒÆËÙ¶È·ÖÎö£»Í¨¹ýÉäÏß×·×Ù¼ÆËã×ßʱ¡¢»¡³¤¡¢³öÉä½Ç¡¢ÈëÉä½Ç£»½øÐÐÆ«Òƿ׾¶¼ÆË㣻ÀûÓÃKirchhoff»ý·Ö·¨Ê¸Á¿Æ«Òƹ«Ê½½øÐеþǰÉî¶ÈÆ«ÒÆ¡£±¾·½·¨½«Æ«ÒÆËÙ¶È·ÖÎö¡¢Æ«Òƿ׾¶Ñ¡È¡¡¢ÉäÏß×·×Ù¡¢Kirchhoff»ý·Ö¹«Ê½½áºÏÓÚÒ»Ì壬²»ÐèÒª½øÐв¨³¡·ÖÀ룬²¢ÊµÏÖ¶à·ÖÁ¿Í¬Ê±Æ«ÒÆ£¬ÊµÏÖת»»²¨µÄ׼ȷ¹éλ¡£´Óʵ¼Ê¿±Ì½Êý¾ÝÀ´¿´£¬²ÉÓñ¾·¢Ã÷µÄµþǰÉî¶ÈÆ«ÒÆ·½·¨£¬²»½öµØ±í³ÉÏñЧ¹ûºÃ£¬³ÉÏñ·Ö±æÂʸߣ¬¶øÇÒת»»²¨³ÉÏñÆÊÃæÉϵÄÉî²ã·´ÉäͬÏàÖáµÄÁ¬ÐøÐÔÌá¸ß£¬¹¹Ôì¸ü¼ÓÇåÎú¡£
Îĵµ±àºÅG01V1/30GK101937100SQ20101025532
¹«¿ªÈÕ2011Äê1ÔÂ5ÈÕ ÉêÇëÈÕÆÚ2010Äê8ÔÂ17ÈÕ ÓÅÏÈȨÈÕ2010Äê8ÔÂ17ÈÕ
·¢Ã÷ÕßÍõÚS, «¿¡ ÉêÇëÈË:Öйú¿ÆÑ§ÔºµØÖÊÓëµØÇòÎïÀíÑо¿Ëù