ÑÇÐÇÓÎÏ·¹ÙÍø-www.yaxin868.com

ɽ¶«ÑÇÐÇÓÎÏ·¹ÙÍø»ú´²ÓÐÏÞ¹«Ë¾Ï³´²¹Ù·½ÍøÕ¾½ñÌìÊÇ£º2025-04-20Çл»³ÇÊÐ[È«¹ú]-ÍøÕ¾µØÍ¼
ÍÆ¼ö²úÆ· :
ÍÆ¼öÐÂÎÅ
¼¼ÊõÎÄÕµ±Ç°Î»ÖÃ:¼¼ÊõÎÄÕÂ>

Ò»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨

ʱ¼ä:2025-04-20    ×÷Õß: ¹ÜÀíÔ±

רÀûÃû³Æ£ºÒ»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°À×´ïÐźŴ¦Àí¼¼ÊõÁìÓò£¬ÌرðÉæ¼°Ò»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨¡£
±³¾°¼¼Êõ£º
¸ß·Ö±æÂÊÀ×´ïΪ»ñµÃ¾àÀëÉϵĸ߷ֱæÂÊ£¬Í¨³£áŠÓÃ(³¬)¿í´øÐźÅ¡£ÔÚ¿í´øÀ×´ïÐźÅÖУ¬²½½øÆµÂÊÁ¬Ðø²¨ÐźÅ(Stepped Frequency Continuous Waveforms, SFCW)ºÍ²½½øÆµÂÊÏßÐÔµ÷ƵÂö³åÐźÅ(Stepped Frequency Chirp Signal, SFCS)µÄÌá³ö(Wehner D. R. High-resolution radar. 2nd edition£¬Norwood, MA Artech House£¬1995£¬Chapter 5. Nadav L. ¡°Stepped-frequency pulse-train radar signal£¬£¬¡¤ IEE Proc-Radar SonarNavigation,2002,149(6) : 198-309. Maron D. E. ¡°Non-periodic frequency-jumped burstwaveforms£¬£¬¡¤ Proceedings of the IEE International Radar Conference£¬London£¬ Oct.1987,484-488. Maron D. E. ¡°Frequency-jumped burst waveforms with stretch processing¡±. IEEE Radar Conference£¬Piscataway :IEEE Press£¬1990£¬274-279.)£¬ÎªÊµÏÖ³¬´ó´ø¿íµÄÀ×´ïÐźÅÌṩÁËеļ¼Êõ;¾¶¡£ÔëÉùÐźÅÀ״ÓÉÓÚ·¢ÉäÐźŵÄËæ»úÐÔ£¬Òò¶ø¾ßÓÐÊ®·ÖÓÅÁ¼µÄµÍ½Ø»ñ¸ÅÂÊ¡¢¿¹¸ÉÈÅÌØÐÔºÍÓÅÁ¼µÄµç´Å¼æÈÝÐÔ£¬´Ó¶øÌá¸ßÀ×´ïÔÚ¸´ÔÓ»·¾³ÏµÄÉú´æÄÜÁ¦£»Í¬Ê±ÆäÄ£ºýº¯ÊýÊÇÀíÏ롰ͼ¶¤ÐΡ±µÄ£¬Ê¹µÃËü¾ßÓÐÎÞÄ£ºý²â¾à¡¢²âËÙºÍÁ¼ºÃµÄ¾àÀë¡¢ËÙ¶È·Ö±æÂÊ¡£ÔëÉùÐźÅ(³¬)¿í´ø¸ß·Ö±æÂʳÉÏñÀ״ºÜºÃµØ°Ñ(³¬)¿í´ø¼¼ÊõºÍÔëÉùÐźÅÀ×´ï¼¼Êõ½áºÏÔÚÒ»Æð£¬Òò¶øËü¼È¾ßÓг£¹æ(³¬)¿í´ø³ÉÏñÀ×´ïµÄ¸ß·Ö±æÂʵÄÓŵ㣬ÓÖ¾ßÓÐÔëÉùÐźÅÀ×´ïÓÅÁ¼µÄµÍ½Ø»ñ¸ÅÂÊ¡¢¿¹¸ÉÈÅÌØÐÔºÍÓÅÁ¼µÄµç´Å¼æÈÝÌØÐÔ£¬½üÄêÀ´µÃµ½³¤×ã·¢Õ¹¡£´«Í³µÄÐÅÏ¢»ñÈ¡»ùÓÚÏãÅ©áŠÑù¶¨ÀíºÍÄοüË¹ÌØáŠÑùÂÊ£¬Ëæ×ŵ±Ç°¶ÔÐÅÏ¢Á¿µÄ»ñÈ¡ÐèÇóÔ½À´Ô½¸ß£¬¶ÔA/DáŠÑùÂʵÄÒªÇóÒ²Ô½À´Ô½¸ß£¬ÏÖÓеÄA/DáŠÑùÆ÷¼þÖð½¥ÄÑÒÔÂú×ãÕâÒ»ÐèÇó¡£Ñ¹Ëõ¸ÐÖª(D. L. Donoho£¬¡°Compressed sensing£¬£¬£¬Information Theory, IEEETransactions on£¬vol. 52£¬no.4£¬2006£¬pp. 1289-1306 £»E.J. Candes, J. Romberg£¬and T. Tao£¬¡°Robust uncertainty principles exact signal reconstruction from highly incompletefrequency information£¬¡± Information Theory, IEEE Transactions on£¬ vol. 52£¬¦Ç¦Ï¡¤ 2£¬2006£¬pp. 489-509 ;E. J. Candes£¬and T. Tao£¬¡°Near_0ptimal Signal Recovery From RandomProjections Universal Encoding Strategies £¬¡± Information Theory, IEEE Transactions on£¬vol. 52, no. 12,2006£¬pp. 5406-5425)¿ÉÒÔÔÚÐźÅÏ¡Êè»ò¿ÉѹËõµÄÇé¿öÏ£¬Í¨¹ýኼ¯Ô¶µÍÓÚÄοüË¹ÌØáŠÑùÂʵÄÊý¾Ý»Ö¸´Ðźţ¬ÔÚÐÅÏ¢»ñÈ¡µÄͬʱʵÏÖѹËõ£¬²»½ö¿ÉÒÔ½µµÍ¶ÔÊý¾Ý»ñÈ¡É豸µÄÒªÇ󣬶øÇÒ¿ÉÒÔ¼õСÊý¾Ý´æ´¢Á¿ºÍ´«ÊäÁ¿£¬½µµÍ¶ÔÏà¹ØÓ²¼þµÄÐÔÄÜÒªÇó¡£Ñ¹Ëõ¸ÐÖªµÄ»Ö¸´Ëã·¨Ò»°ã°üÀ¨Í¹ËɳÚËã·¨ºḬ́À·µü´úËã·¨£¬Í¹ËɳÚËã·¨°üÀ¨»ù×·×Ù(Basis Pursuit, BP) (S. S. B. Chen, D. L Donoho, and M. A. Saunders, iiAtomicdecomposition by basis pursuit£¬£¬£¬Siam Journal on Scientific Computing£¬ vol. 20£¬no. 1£¬1998£¬pp. 33-61)£¬Äڵ㷨(K. Seung-Jean£¬K. Koh, ¦¬. Lustig et al.£¬¡°AnInterior-PointMethod for Large-Scale I ¦©-Regularized Least Squares,£¬£¬Selected Topics in SignalProcessing, IEEE Journal of, vol. I, no. 4, 2007, pp. 606-617)ºÍÌݶȷ¨(¦¥¡¤ T. Hale,W. T. Yin,and Y. Zhang,¡°Fixed-point continuation for 11-minimization Methodology andconvergence,£¬£¬Siam Journal on Optimization, vol.19, no. 3,2008, pp. 1107-1130) o ̰À·µü´úËã·¨°üÀ¨Æ¥Åä×·×Ù(Matching Pursuit, MP) (S. G. Mallat, and Z.Zhifeng, ¡°Matching pursuits with time-frequency dictionaries,£¬£¬Signal Processing, IEEETransactions on, vol. 41, no. 12,1993, pp. 3397-3415),Õý½»Æ¥Åä×·×Ù (OrthogonalMatching Pursuit, 0¦¬¦±)(J. A. Tropp, and A. C. Gilbert, ¡°Signal Recovery From RandomMeasurements Via Orthogonal Matching Pursuit, ¡± Information Theory, IEEETransactions on, vol. 53, no. 12,2007, pp. 4655-4666)µÈ¡£ÔÚʵ¼ùÖУ¬(³¬)¿í´øÔëÉùÐźŶÔÓ²¼þʵÏÖºÍʹÓû·¾³µÄÒªÇó½Ï¸ß£¬ÓÉÓÚÐźŴø¿íµÄÔö¼Ó»á¸ø½ÓÊÕ»úµÄ¼ì²¨´øÀ´ºÜ´óµÄѹÁ¦£¬´ËʱÐèÒª¸ü¸ßËÙµÄA/Dת»»Æ÷ÒÔ¼°¸ü¸ßËÙµÄÊý¾Ý´æ´¢£¬Õ⼫´óµØÏÞÖÆÁËÀ×´ïµÄ³ÉÏñ·Ö±æÂÊ¡£

·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷µÄÄ¿µÄÔÚÓÚ£¬ÎªÁ˽â¾öÉÏÊöÎÊÌ⣬´Ó¶øÌṩһÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÔÚÄ¿±êÏ¡ÊèµÄÇé¿öÏ£¬½µµÍÀ×´ï½ÓÊÕ»ú²ÉÑùÂÊ¡¢´æ´¢Á¿ºÍ´«ÊäÁ¿£¬ÊµÏÖÁË(³¬)¿í´øÔëÉùÀ×´ïÐźŵijÉÏñ´¦Àí¡£Îª´ïµ½ÉÏÊöÄ¿µÄ£¬±¾·¢Ã÷Ìá³öÒ»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬¸Ã·½·¨µÄ¾ßÌå²½Öè°üÀ¨²½ÖèI):ÓÉÔëÉùÐźÅÔ´²úÉú³õʼÔëÉùÐòÁУ¬¶Ô¸Ã³õʼÔëÉùÐòÁнøÐнØÈ¡µÃµ½Èô¸É×ÓÂö³åÔëÉùÐòÁУ¬Ã¿¸ö×ÓÂö³åÔëÉùÐòÁÐÖеÄ×ÓÂö³åµÄ¸öÊýΪN ;¶Ôÿ¸ö×ÓÂö³åÔëÉùÐòÁнøÐдøÍ¨Â˲¨´¦Àí£¬»ñµÃ´ø¿íΪBµÄÖÐÆµÔëÉùÐòÁУ»ÔÙÀûÓÃÏ£¶û²®Ìر任£¬»ñµÃI/QÁ½Â·ÖÐÆµÔëÉùÐòÁУ¬¶ÔI/QÁ½Â·ÖÐÆµÔëÉùÐòÁнøÐÐÏÂ±äÆµ´¦Àí£¬»ñµÃʽ(I) I/QÁ½Â·»ù´øÔëÉùÐòÁÐ
Un¢Åun(t) = I (t)+jQ(t) ¦Ç = 1,2, ¡¤ ¡¤ ¡¤ , N,0 < t < Tp(I)ʽÖУ¬¦ÇΪ×ÓÂö³å±àºÅ£¬TpΪ×ÓÂö³å¿í¶È£»²½Öè2):½«ËùÊöµÄ²½ÖèI)»ñµÃµÄI/QÁ½Â·»ù´øÔëÉùÐòÁÐun(t)½øÐÐI/Qµ÷ÖÆºÍ·¢Éä»úÉÏ±äÆµÆ÷µÄÒ»¼¶ÉÏ±äÆµ£¬È»ºóÔÙ¾­¹ý·¢Éä»úÉÏ±äÆµÆ÷µÄ¶þ¼¶ÉÏ±äÆµ½«Ò»¼¶ÉÏ±äÆµºóµÄÐźŵ÷ÖÆÖÁÀ×´ïÉ䯵¹¤×÷ƵÂʺóÐźÅΪTn(t)£¬·¢ÉäÐźÅTn(t)£»Tn(t) =un(t) ¡¤ exp{j2 [f0+(n-l) Af]t}(2)ʽÖУ¬[(n-1)¡¤ (Tp+Tg) ] ( t ( [(n-1) ¡¤ (Tp+Tg)+Tp]£¬fQ ΪµÚ I ¸ö×ÓÂö³åµÄÔØÆµ£¬ ¦¤ fΪ±¾ÕñƵÂÊÔ´µÄƵÂʲ½½øÖµ£¬TpºÍTg·Ö±ðΪ×ÓÂö³å¿í¶ÈºÍ×ÓÂö³åÖ®¼äµÄ¼ä¸ô£»·¢ÉäÐźÅ1£»(0¾­´«Êäºó£¬µ½´ï½ÓÊÕ»úµÄÐźÅSRn(t);ÐźÅRn(t)ÊDz»Í¬Ä¿±ê¶ÔÐźÅ1£»(0µÄ²»Í¬·ù¶Èµ÷ÖÆºÍ²»Í¬ÑÓʱµÄÐźÅÖ®ºÍ£»
ȨÀûÒªÇó
1. Ò»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬¸Ã·½·¨µÄ¾ßÌå²½Öè°üÀ¨²½ÖèI):ÓÉÔëÉùÐźÅÔ´²úÉú³õʼÔëÉùÐòÁУ¬¶Ô¸Ã³õʼÔëÉùÐòÁнøÐнØÈ¡µÃµ½Èô¸É×ÓÂö ³åÔëÉùÐòÁУ¬Ã¿¸ö×ÓÂö³åÔëÉùÐòÁÐÖеÄ×ÓÂö³åµÄ¸öÊýΪN ;¶Ôÿ¸ö×ÓÂö³åÔëÉùÐòÁнøÐдø ͨÂ˲¨´¦Àí£¬»ñµÃ´ø¿íΪBµÄÖÐÆµÔëÉùÐòÁУ»ÔÙÀûÓÃÏ£¶û²®Ìر任£¬»ñµÃI/QÁ½Â·ÖÐÆµÔëÉù ÐòÁУ¬¶ÔI/QÁ½Â·ÖÐÆµÔëÉùÐòÁнøÐÐÏÂ±äÆµ´¦Àí£¬»ñµÃʽ(1)I/QÁ½Â·»ù´øÔëÉùÐòÁÐu (t) un(t) = I (t)+jQ(t) ¦Ç = 1,2, ¡¤ ¡¤ ¡¤ , N,0¡Ü t ¡Ü Tp (I)ʽÖУ¬¦ÇΪ×ÓÂö³å±àºÅ£¬TpΪ×ÓÂö³å¿í¶È£»²½Öè2):½«ËùÊöµÄ²½ÖèI)»ñµÃµÄI/QÁ½Â·»ù´øÔëÉùÐòÁÐun(t)½øÐÐI/Qµ÷ÖÆºÍ·¢Éä»ú ÉÏ±äÆµÆ÷µÄÒ»¼¶ÉÏ±äÆµ£¬È»ºóÔÙ¾­¹ý·¢Éä»úÉÏ±äÆµÆ÷µÄ¶þ¼¶ÉÏ±äÆµ½«Ò»¼¶ÉÏ±äÆµºóµÄÐźŠµ÷ÖÆÖÁÀ×´ïÉ䯵¹¤×÷ƵÂʺóÐźÅΪTn (t)£¬·¢ÉäÐźÅTn(t)£»Tn (t) = un(t) ¡¤ exp{j2 [f0+ (¦Ç-1) ¦¤ f]t}(2)ʽÖУ¬[(¦Ç-1) ¡¤ (Tp+Tg)]¡Ü t¡Ü[(¦Ç-1) ¡¤ (Tp+Tg)+Tp], fQ ΪµÚ I ¸ö×ÓÂö³åµÄÔØÆµ£¬Af Ϊ±¾ÕñƵÂÊÔ´µÄƵÂʲ½½øÖµ£¬TpºÍTg·Ö±ðΪ×ÓÂö³å¿í¶ÈºÍ×ÓÂö³åÖ®¼äµÄ¼ä¸ô£»·¢ÉäÐźţ¡£»(0¾­´«Êäºó£¬µ½´ï½ÓÊÕ»úµÄÐźÅSRn(t);ÐźÅRn(t)ÊDz»Í¬Ä¿±ê¶ÔÐźŠTn(t)µÄ²»Í¬·ù¶Èµ÷ÖÆºÍ²»Í¬ÑÓʱµÄÐźÅÖ®ºÍ£»
2.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½Öè5)²ÉÓÃ͹ËɳÚËã·¨»ò̰À·µü´úËã·¨¶Ôr = DUx+n½øÐÐÇó½â¡£
3.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½Öè6)ÖеÄÈ¥ÖØµþ²ÉÓöÔÉÏÒ»¸ö×ÓÂö³åºÍÏÂÒ»¸ö×ÓÂö³å¸÷ȡһ°ëµÄ·½·¨¡£
4.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½Öè6)ÖеÄÏàλ²¹³¥²½Öè°üÀ¨Ê×ÏÈ£¬Çó³öÏàÁÚÁ½¸ö×ÓÂö³åÁ¬½Ó´¦µÄÏàλ²î£»È»ºó£¬½«Õâ¸öÏàλ²î²¹³¥ÔÚÏÂÒ»¸ö×ÓÂö³åÉÏ¡£
5.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ²½Öè7)»¹°üÀ¨¶ÔºÏ³ÉµÄ¿í´øÐźŽøÐС°¼Ó´°¡±´¦Àí¡£
6.¸ù¾ÝȨÀûÒªÇó5ËùÊöµÄ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊöµÄ¡°¼Ó´°¡±´¦Àí²ÉÓúºÄþ(Hanning)´°´¦Àí¡£
È«ÎÄÕªÒª
±¾·¢Ã÷Éæ¼°Ò»ÖÖ»ùÓÚѹËõ¸ÐÖªµÄ¿í´øµ÷Ƶ²½½øÔëÉùÀ×´ïÐźŴ¦Àí·½·¨£¬¸Ã·½·¨°ÑÔëÉùÐźÅ¡¢ÆµÂʲ½½øÐźźÍѹËõ¸ÐÖªµÄ½áºÏ£¬¼æÓÐÈýÕßµÄÓŵ㣬¼È±£ÁôƵÂʲ½½øÐźÅÕ­´ø´¦ÀíµÄÓŵ㣬Ó־߱¸ÔëÉùÐźŵͽػñ¸ÅÂÊ¡¢¿¹¸ÉÈźÍÓÅÁ¼µÄµç´Å¼æÈݵÄÌØÐÔ£¬Í¬Ê±ÓÖ½áºÏѹËõ¸ÐÖªÀûÓõÍÊý¾ÝÁ¿»ñµÃÁ˸߷ֱæÍ¼Ïñ¡£±¾·¢Ã÷·½·¨ÔÚ¹Û²âÄ¿±êÏ¡ÊèµÄÌõ¼þÏ£¬½µµÍÁË(³¬)¿í´øÐźŶԽÓÊÕ»úA/D²ÉÑù¡¢´æ´¢ºÍ´«ÊäÉ豸µÄÒªÇó£¬Ò×ÓÚʵÏÖ£¬¶ÔÓÚʵ¼ÊϵͳÓÐÖØÒªµÄÏÖʵÒâÒå¡£
Îĵµ±àºÅG01S7/285GK102608578SQ201110023419
¹«¿ªÈÕ2012Äê7ÔÂ25ÈÕ ÉêÇëÈÕÆÚ2011Äê1ÔÂ21ÈÕ ÓÅÏÈȨÈÕ2011Äê1ÔÂ21ÈÕ
·¢Ã÷ÕßÕÅÔÆ»ª, ¶­Ïþ, ¹ËÏè ÉêÇëÈË:Öйú¿ÆÑ§Ôº¿Õ¼ä¿ÆÑ§ÓëÓ¦ÓÃÑо¿ÖÐÐÄ

  • רÀûÃû³Æ£ºÒ»ÖָĽøµÄµØÕðµÀÊý¾ÝµÄ·Ö½âºÍÖØ¹¹·½·¨¼¼ÊõÁìÓò£º±¾·¢Ã÷Éæ¼°µØÇòÎïÀí¿±Ì½¼¼Êõ£¬¸ü¾ßÌ嵨½²£¬Éæ¼°Ò»ÖÖÄܹ»¼õÉÙµØÕðµÀ¶à×Ó²¨·Ö½â¼ÆËãÁ¿²¢»ñÈ¡¾ßÓи߾«¶ÈµÄµØÕðµÀÊý¾ÝµÄ·Ö½âºÍÖØ¹¹µÄ·½·¨¡£±³¾°¼¼Êõ£ºËæ×ÅÓÍÆøÌ￱̽ºÍ¿ª·¢µÄÉîÈ룬ѰÕҵͷù¹¹Ôì¡¢±¡²ãÓÍ
  • רÀûÃû³Æ£ºÉúÎï±êÖ¾ÎïµÄÖÆ×÷·½·¨¼¼ÊõÁìÓò£º±¾·¢Ã÷Éæ¼°ÓÃÓÚÅж϶԰©Ö¢»¼ÕߵĻ¯Ñ§·ÅÉäÏßÁÆ·¨µÄÊÊÓÃÐÔµÄÉúÎï±êÖ¾Îï¡£±³¾°¼¼Êõ£º¾Ý±¨µÀ£¬ÔÚÏÙ°©ºÍ±âƽÉÏÆ¤°©»¼ÕßÖУ¬Í¨¹ýÔÚÖ×ÁöÈ¥³ýÊÖÊõǰ½øÐл¯Ñ§·ÅÉäÏßÁÆ·¨Óë½öÒÀ¿¿ÊÖÊõ½øÐÐÖÎÁƵÄÇé¿öÏà±È£¬°©»¼ÕߵĴæ»îÂÊÌá¸ß(
  • רÀûÃû³Æ£ºÄ͸ßѹµç´Å²âËÙ×°ÖõÄÖÆ×÷·½·¨¼¼ÊõÁìÓò£º±¾ÊµÓÃÐÂÐÍÉæ¼°×ªËÙ²âÁ¿¼¼ÊõÁìÓò£¬ÌرðÉæ¼°Ò»ÖÖÄ͸ßѹµç´Å²âËÙ×°Öᣱ³¾°¼¼Êõ£ºÃÜ·âÔÚ¸ßѹÈÝÆ÷ÖеÄÐýת²¿¼þµÄתËÙ²âÁ¿Ö÷ÒªÓÐÒÔÏÂÁ½ÖÖ·½Ê½Ò»¡¢ÔÚÐýת²¿¼þÉϰ²×°³£¹æ×ªËÙ²âÁ¿ÒÇÆ÷£¬²¢½«×ªËÙÐźÅͨ¹ý¡°´©Ç½¡±¼¼
  • רÀûÃû³Æ£ºÒ»ÖÖ¼ì²âÐóÈâÖÐÀ³¿Ë¶à°Í°·µÄÃâÒß½ºÌå½ðÊÔ¼Á°åµÄÖÆ×÷·½·¨¼¼ÊõÁìÓò£º±¾ÊµÓÃÐÂÐÍÉæ¼°Ò»ÖÖ¼ì²âÐóÈâÖÐÀ³¿Ë¶à°Í°·µÄÃâÒß½ºÌå½ðÊÔ¼Á°å£¬¾ßÌåÉæ¼°Ò»ÖÖ¼ì²âÐóÈâÖÐÀ³¿Ë¶à°Í°·µÄÃâÒß½ºÌå½ð¿ìËÙ¼ì²âÊÔ¼Á°å¡£±³¾°¼¼Êõ£ºÀ³¿Ë¶à°Í°·(Ractopamine)ÓëÑÎ
  • רÀûÃû³Æ£º²¨Îƹܿ׵À×¢½¬ÃÜʵ¶È³¬Éù¼ì²éµÄ×°Öü°·½·¨¼¼ÊõÁìÓò£º±¾·¢Ã÷¹«¿ªÁËÒ»ÖÖ»ùÓÚ³¬Éù²¨¼ì²â²¨ÎƹÜ×¢½¬ÃÜʵ¶ÈµÄ×°Öü°·½·¨£¬ÊôÓÚ³¬Éù¼ì¡¤²â¼°·ÖÎö¼¼ÊõÁìÓò¡£±³¾°¼¼Êõ£ºËæ×ÅÖйúÇÅÁº½¨ÉèµÄ¸ßËÙ·¢Õ¹£¬²¨ÎƹÜÔ¤Ó¦Á¦»ìÄýÍÁ½á¹¹µÃµ½¹ã·ºÓ¦Óã¬Æä²¨Îƹܿ׵Àѹ½¬
  • רÀûÃû³Æ£ºÒ»ÖÖÓÃÓڸߵçѹ»·¾³ÖеÄÎÞÔ´ÎÞÏßζȴ«¸ÐÆ÷µÄÖÆ×÷·½·¨¼¼ÊõÁìÓò£º±¾ÊµÓÃÐÂÐÍÉæ¼°Î¶ȴ«¸ÐÆ÷ÁìÓò£¬ÌرðÉæ¼°Ò»ÖÖ²ÉÓÃÉù±íÃæ²¨Î¶ȴ«¸ÐÆ÷оƬ£¬ÓÃÓڸߵçѹ»·¾³ÖеÄÎÞÔ´ÎÞÏßζȴ«¸ÐÆ÷¡£±³¾°¼¼Êõ£ºÔڸߵçѹ»·¾³ÖУ¬´æÔڸߴų¡£¬¸ßΣÏÕµÄÒòËØ£¬Ò»°ãµÄζÈ
ɽ¶«ÑÇÐÇÓÎÏ·¹ÙÍø»ú´²ÓÐÏÞ¹«Ë¾
È«¹ú·þÎñÈÈÏߣº13062023238
µç»°£º13062023238
µØÖ·£ºëøÖÝÊÐÁúȪ¹¤ÒµÔ°68ºÅ
¹Ø¼ü´Ê£ºÏ³´²£¬Êý¿ØÏ³´²£¬ÁúÃÅϳ´²
¹«Ë¾¶þάÂë
Copyright 2010-2024 °æÈ¨ËùÓÐ All rights reserved ³ICP±¸19044495ºÅ-12
¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿